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Обозначения

Пусть A – неассоциативная коммутативная алгебра над полем F.
Для элемента a ∈ A определим оператор сдвига ada : A→ A
следующим образом ada(b) = ab для всех b ∈ A.

Обозначим через Aλ(a) собственное подпространство оператора
ada для λ ∈ F, т.е. Aλ(a) = {b ∈ A | ada(b) = λb}.

Для подмножества F ⊆ F определим AF (a) = ⊕λ∈FAλ(a).
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Таблицы слияния
Путь F – поле и F ⊆ F.

Определение

Таблицей слияния называется отображение ∗ : F × F → 2F .

Обозначается обычно тем же символом F .

Ассоциативная таблица слияния

C =

∗ 0 1

0 0

1 1

Таблица слияния йорданова типа

J (η) =

∗ 0 1 η

0 0 η

1 1 η

η η η 1 + 0
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Оси

Определение
Пусть F – таблица слияния. Идемпотент a ∈ A называется осью
алгебры A, если

A = AF (a) и
Aλ(a)Aµ(a) ⊆ Aλ∗µ(a) для любых λ, µ ∈ F .

Определение
Ось a называется примитивной, если A1(a) = ⟨a⟩.

Теорема
Пусть A ассоциативная алгебра, a ∈ A – идемпотент. Тогда a ось с
таблицей слияния C.
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Аксиальная алгебра
Определение
Коммутативная алгебра A называется F -аксиальной (примитивной)
алгеброй, если A порождается (примитивными) F-осями.

Теорема
C-аксиальная алгебра ассоциативна.

Правило слияния Серешского типа
Правила слияния F называются Серешского типа, если
(i) 0 ∈ F , и
(ii) λ ∗ 0 = {λ} при λ ̸= 1, и 1 ∗ 0 = ∅.

Теорема Сереша
Если F правило слияния Серешского типа, то любая F -ось a
ассоциирует с A0(a), т.е. для всех x ∈ A и u ∈ A0(a) выполняется
a(xu) = (ax)u.
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Примеры

Определение
Пусть F = R и M = {0, 1, 1/4, 1/32}.
Рассмотрим следующую таблицу слияния M.

∗ 0 1 1/4 1/32

0 0 1/4 1/32

1 1 1/4 1/32

1/4 1/4 1/4 1 + 0 1/32

1/32 1/32 1/32 1/32 1 + 0 + 1/4

Алгебра Грайса
196884-мерная алгебра Грайса является примитивной 3-порожденной
M-аксиальной алгеброй.
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Аксиальная алгебра йордонова типа

Определение
Примитивная J (η)-аксиальная алгебра A называется алгеброй
йорданова типа η.
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Йорданова алгебра
Определение

Йорданова алгебра — (неассоциативная) коммутативная алгебра над
кольцом, в которой справедливо тождество
(x2y)x = x2(yx) (йорданово тождество)

Йордановы алгебры были впервые введены в 1933 году в работе
Паскуаля Йордана, для формализации понятия алгебры квантовых
наблюдаемых.

Разложение Пирса

Йорданова алгебра, порожденная конечным число примитивных
идемпотентов, является примитивной J (1/2)-аксиальной алгеброй.

Теорема
Любая простая конечномерная йорданова алгебра порождается
примитивными идемпотентами.
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Группы 3-транспозиций

Группа 3-транспозиций
Пусть D – нормальное множество инволюций в группе G, т.е. для
любого d ∈ D и g ∈ G верно, что |d| = 2 и dg ∈ D. Множество D
называется множеством 3-транспозиций, если для любых d,e ∈ D
порядок de не превосходит 3. Если при этом G = ⟨D⟩, то пара (G,D)
называется группой 3-транспозиций.

Пример
Симметрическая группа Sn является группой 3-транспозиций вместе с
множеством состоящим из всех транспозиций (i, j).
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Алгебры Мацуо

Алгебра Мацуо
Пусть (G,D) – группа 3-транспозиций, и F – поле и char(F) ̸= 2.
Зафиксируем скаляр η ∈ F \ {0, 1}. Рассмотрим векторное
пространство FD, натянутое на инволюции из D с коэффициентами
из поля F. Определим умножение на базисных векторах:

ef =


e, если e = f ;

0, если |ef | = 2;

η

2
(e+ f − ef ), если |ef | = 3;

Полученная алгебра называется алгеброй Матцуо для группы (G,D) и
обозначается через Mη(G,D).
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Алгебры Мацуо

Дж. Холл, Ф. Рехрен, С. Шпекторов (2015)
Алгебра Матцуо Mη(G,D) является алгеброй йорданова типа η

Дж. Холл, Ф. Рехрен, С. Шпекторов (2015)

Если η ̸=
1

2
, то алгебра йорданова типа η изоморфна фактор алгебре

некоторой алгебры Матцуо.
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Вопросы

Дж. Холл, Ф. Рехрен, С. Шпекторов (2015)
Когда йорданова алгебра изоморфна алгеброе Матцуо или фактор
алгебре алгебры Матцуо?

Гипотеза
Алгебра йорданова типа 1/2 изоморфна фактор алгебре алгебры
Матцуо или является йордановой.
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Алгебры йорданова типа как алгебры Матцуо

Т. Медц, Ф. Рехрен (2017)
Пусть F– поле и char(F ) ̸= 2, 3, и J – йорданова алгебра изоморфная
некоторой алгебре Матцуо. Тогда J изоморфна прямому
произведению алгебр Матцуо Ji =M1/2(Gi, Di), где для каждого i
выполнено одно из утверждений:
(i) Gi ≃ Sym(n);
(ii) Gi ≃ 32 : 2.
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Алгебры йорданова типа как алгебры Матцуо

А. Мамонтов, А. Старолетов, И.Г. (2023)
Пусть (G,D) – конечная связная группа 3-транспозиций и
M =M1/2(G,D). Тогда J =M/M⊥ – йорданова алгебра в следующих
случаях:

1 G ≃ 2•1 : Sym(m), где m ≥ 4 и dim J = m(m+1)
2 ;

2 G ≃ 3•1 : Sym(m), где m ≥ 4 и dim J = m2;
3 G ≃ O+

8 (2) и dim J = 36;
4 G ≃ O−

6 (2) ≃ +Ω+
5 (3) и dim J = 21;

5 G ≃ Sp6(2) и dim J = 28;
6 G ≃ +Ω−

6 (3) и dim J = 36;
7 G ≃ 2× SU4(2) ≃ +Ω−

5 (3) и dim J = 25;
8 G ≃ SU5(2) и dim J = 45;
9 G ≃ 4•1SU3(2)

′ и dim J = 28;
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2-порожденные аксиальные алгебры йорданова типа

Дж. Холл, Ф. Рехрен, С. Шпекторов (2015)
Размерность 2-порожденной алгебры йорданова типа не превосходит 3.

Дж. Холл, Ф. Рехрен, С. Шпекторов (2015)
2-порожденная алгебры йорданова типа 1/2 является йордановой
алгеброй.
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Форма Фробениуса
Пусть A алгебра йорданова типа η, a, b ∈ A – примитивные оси.

Утверждение
Имеем a = a0 + ϕa(b)b+ aη, b = b0 + ϕb(a)a+ bη, где a0 ∈ A0(b),
aη ∈ Aη(b), b0 ∈ A0(a), bη ∈ Aη(a). Тогда ϕa(b) = ϕb(a).

Форма Фробениуса
Симметрическая билинейная форма (·, ·) называется формой
фробениуса если для любых x, y, z ∈ A выполнено (xy, z) = (x, yz).

Утверждение
Алгебра A имеет базис B из осей.

Утверждение
Определим симметрическую билинейную форму (·, ·) на базисе B
следующим образом: (c, d) = ϕc(d) для любых c, d ∈ B. Форма (·, ·)
является формой Фробениуса.
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Радикалы

Аксиальный радикал
Максимальный идеал не содержащий осей называется аксиальным
радикалом.

Радикал формы
Радикал формы I(A) = {x ∈ A|(x, y) = 0,∀y ∈ A}

Утверждение
Если A алгебра йорданова типа, то радикал формы совпадает с
аксиальным радикалом.
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2-порожденные алгебры

2-порожденные алгебры
Пусть A = ⟨⟨a, b⟩⟩ 2-порожденная алгебра йорданова типа 1/2. Тогда:

1 dim(A) = 1, (a, b) = 1, a = b, dim(R(A)) = 0;
2 dim(A) = 2, (a, b) = 0, A ∼= F⊕ F, dim(R(A)) = 0;
3 dim(A) = 2, (a, b) = 1, dim(R(A)) = 1;
4 dim(A) = 3, (a, b) = 0, dim(R(A)) = 1, A/R(A) ∼= F⊕ F;
5 dim(A) = 3, (a, b) = 1, dim(R(A)) = 2;
6 dim(A) = 3, (a, b) ̸= 0, 1, и A это алгебра Матсуо. В частности, A

простая йорданова алгебра JForm2(F).
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3-порожденные алгебры

А.Старолетов, И.Г. (2020)
Пусть A – примитивная алгебра йорданова типа η над полем F и
char(F) ̸= 2. Если A порождается примитивными осями a, b и c, тогда
A является линейной оболочкой множества {a, b, c, ab, bc, ac, (ab)c,
(ac)b, (bc)a}, в частности dimA ≤ 9. Определим скаляры α = φa(b),
β = φb(c), γ = φc(a) и ψ = φa(bc). Тогда
(i) A0(a) = ⟨ab− α(1− η)a− ηb, ac− γ(1− η)a− ηc, a(bc)− ηbc−

ψ(1− η)a, b(ac) + c(ab)− ηbc− ηαc− ηγb− (2αγ + ηψ− 4ηαγ)a)⟩;
(ii) Aη(a) = ⟨b(ac)− c(ab), ab− αa, ac− γa, a(bc)− ψa⟩;
(iii) α(η − 1

2)(β − γ)(η − 2α) = β(η − 1
2)(γ − α)(η − 2β) =

γ(η − 1
2)(α− β)(η − 2γ) = 0.

Более того, если η = 1
2 , то A является йордановой алгеброй.
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3-порожденные алгебры

Пусть F – поле характеристики, отличной от 2. Обозначим через
Mn(F)+ множество матриц с йордановым умножением

A ∗B =
1

2
(AB +BA).

А.Старолетов, И.Г. (2020)
Пусть A – алгебра йорданова типа 1/2 над полем F и char(F) ̸= 2.
Предположим, что A порождается примитивными осями a, b, и c.
Обозначим α = φa(b), β = φb(c), γ = φc(a). Если
(α+ β + γ − 2ψ − 1)(αβγ − ψ2) ̸= 0 и ψ2 − αβγ является квадратом в
F, тогда A ≃M3(F)+.
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4-порожденные алгебры йорданова типа

Т. Медц, Й. Сегев, Л. Ровен (2023)
Размерность 4-порожденной алгебры йорданова типа не
превосходит 81.
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Гипотезы

Гипотеза
Простая конечномерная алгебра йорданова типа унитальна.

Гипотеза
Конечнопорожденная алгебра йорданова типа конечномерна.
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Z2-градуировка

Z2-градуировка таблицы слияния
Таблица слияния F называется Z2-градуированным, если
F = F+ ∪ F−, F+ ∩ F− = ∅, и для любых α+, β+ ∈ F+ и
α−, β− ∈ F− выполняются следующие условия:
α− ∗ β−, α+ ∗ β+ ⊆ F+, α+ ∗ β−, α− ∗ β+ ⊆ F−. В этом случае пара
(F+,F−) называется Z2-градуировкой таблици слияния F .

Если множество F− пусто, то Z2-градуировка (F+,F−) называется
тривиальной.

Z2-градуировка алгебры
Алгебра A над полем F называется Z2-градуированной, если
существуют подпространства A+ и A− такие, что A = A+ ⊕A−,
A+ ∩A− = 0, и для любых α+, β+ ∈ A+ и α−, β− ∈ A− выполняются
условия: α− ∗ β−, α+ ∗ β+ ∈ A+, α+ ∗ β−, α− ∗ β+ ∈ A−. В этом случае
пара (A+, A−) называется Z2-градуировкой алгебры A.
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τ -инволюции (автоморфизм Миямото)

Пусть F Z2-градуированая таблица слияния. Положим
A+

a = AF+(a), A−
a = AF−(a).

Утверждение
Пара (A+

a , A
−
a ) является Z2-градуировкой алгебры A.

τ -инволюция
Для каждой оси a определим отображение τa : AßA, следующим
образом τa(x

+ + x−) = x+ − x−, где x+ ∈ A+(a) и x− ∈ A−(a).

Утверждение
τa– автоморфизм алгебры A.
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Группа Миямото

Определение
Пусть A аксиальная алгебра порожденная множеством осей X. Группа
Miy(A,X) = ⟨τa|a ∈ X⟩ называется группой Миямото.

Теорема
Пусть (G,D) группа 3-транспозиций и A =Mη(G,D). Тогда
Miy(A,D) ≃ G/Z(G).

Определение
Множество осей X называется замкнутым если для любого
ϕ ∈Miy(A,X) и x ∈ X выполнено ϕ(x) ∈ X.
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Жесткие подалгебры

Пусть A – алгебра йорданова типа 1/2.

Определение
Пусть a, b – оси в A. Подалгебра B = ⟨⟨a, b⟩⟩ называется жесткой, если
каждый примитивный идемпотент в B является примитивной осью во
всей алгебре A. Кроме того, это свойство должно сохраняться при
любом расширении основного поля F.

C. Шпекторов, А. Старолетов, Я. Десмет, И.Г.
Пусть A порожденная замкнутым множеством X. Для любых a, b ∈ X
если (a, b) ̸= 1

4 то подалгебра ⟨⟨a, b⟩⟩ является жесткой.
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Жесткие подалгебры

Я. Десмет
Подалгебра ⟨⟨a, b⟩⟩ жесткая тогда и только тогда, когда
adaadb − adbada является дифференцирование A.

Связность
Оси a и b называются связными если X содержит конечное множество
a = a1, ..., an = b такое что ⟨⟨ai, ai+1⟩⟩ жесткая подалгебра и
aiai+1 ̸= 0.

Блок связности
Подмножество Y ⊆ X называется блоком связности если любая пара
a, b ∈ Y связна и нет z ∈ X \ Y связного с элементом из Y .
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Я. Десмет, С. Шпекторов
Связное множество осей порождает йорданову подалгебру.

Я. Десмет, С. Шпекторов
Если радикал алгебры A тривиален, то различные связные множества
осей порождают не пересекающиеся подалгебры.

Пусть Lie(X) алгебра порожденная операторами
[La, Lb] = adaadb − adbada, где a, b ∈ X.

Утверждение
Алгебра Lie(X) является алгеброй Ли.

Я. Десмет, С. Шпекторов
Lie(X) = Lie(X1)⊕ ...⊕ Lie(Xn), где X1, ..., Xn разбиение на блоки
связности множества X.
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Группы нечетных транспозиций

ω-транспозиции
Пусть G – группа, а ω – множество натуральных чисел. Подмножество
D инволюций группы G называется множеством ω-транспозиций, если
G = ⟨D⟩, DG = D и |uv| ∈ ω∪{2} для любых различных u и v из D.
Если ω = {n}, то D называется множеством n-транспозиций.
Если ω – множество всех нечётных натуральных чисел, то D
называется множеством нечётных транспозиций.

Группа ω-транспозиций
Пара (G,D) называется группой ω-транспозиций, n-транспозиций,
нечетных транспозиций если множество D является множеством
ω-транспозиций, n-транспозиций, нечетных транспозиций,
соответственно.
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Группы муфангова типа

Группа строго n-транспозиций
Группа n-транспозиций (G,D) называется группой строго
n-транспозиций если |uv| = n для любых различных u, v ∈ D.

Группы муфангова типа
Группа строго 3-транспозиций называется группой муфангова типа.

Теорема Фишера
Пусть (G,D) конечная группа муфангова типа. Тогда G = A⋋B, где
A – группа периода 3, B – группа порядка 2.
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Z∗ теорема Глаубермана

Пусть G — конечная группа, а Z(G) — её центр. Ядром группы G
называется K(G)– наибольшая нормальная подгруппа нечётного
порядка в G, Z∗(G) это подгруппа G, содержащую K(G), такую что
Z∗(G)/K(G) = Z(G/K(G)).

Теорема Глаубермана Z∗

Пусть S – силовская 2-подгруппа конечной группы G и x ∈ S.
Необходимым и достаточным условием для того, чтобы x ∈ Z∗(G),
является условие CG(x) ∩ xG = x.

Утверждение
Пусть (G,D) группа строго n-транспозиций. Тогда n – простое число
и G = A⋋B, где A – группа периода n, B – группа порядка 2.
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Группы Бернсайда

Свободная группа Бернсайда
Свободная группа Бернсайда ранга d и показателя n, обозначается
B(d, n)– факторгруппа свободной группы Fd от d образующих по
нормальному замыканию N множества {gn | g ∈ Fd} в Fd.

Гипотеза Бернсайда (1902)
Группа B(d, n) конечна.

Утверждение
Группа B(d, 2) конечна (Бернсайд 1902)
Группа B(d, 3) конечна (Бернсайд 1902)
Группа B(d, 4) конечна (Санов 1940)
Группа B(d, 6) конечна (Холл 1958)
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Группы Бернсайда

Новиков, Адян (1958)
Если n ≥ 4361 нечетное число, то B(2, n) бесконечная группа.

Аткарская, Рипс, Тент (2025)
Если n ≥ 557 нечетное число, то B(2, n) бесконечная группа.

Лысенок (1996)
Если n ≥ 16k, где k > 8000, то B(2, n) бесконечная группа.
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Пример группы строго p-транспозиций

Пусть K = ⟨a, b⟩ = B(2, p), где p простое число, τ ∈ Aut(K) такой,
что τ(a) = a−1, τ(b) = b−1.

Утверждение

Пусть G = K ⋋ ⟨τ⟩, D = τG. Пара (G,D) является группой строго
p-транспозиций.
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Лемма Шрайера

Лемма Шрайера
Подгруппа конечного индекса в конечно порождённой группе является
конечно порождённой.

Утверждение
Пусть (G,T ) — группа нечётных транспозиций, и пусть G имеет
ограниченный период. Если G/Z(G) — конечная группа и T —
конечное множество, то G — конечная группа.
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Алгебра нечетных транспозиций

Определение
Пусть (G,T ) – группа строго нечетных транспозиций,
ΩT = {|ab| | a, b ∈ T} \ {1}. Для каждого числа n ∈ ΩT определим
некоторый элемент ηn ∈ F \ {0, 1}. Пусть ΓT = {ηn | n ∈ ΩT }.
Построим F -алгебру с базисом T следующим образом:

a ∗ b =

a, если b = a,

ba + δ(ba), где δ(ba) = ηn
∑

x∈I(a,b)\{ba} x и n = |ab|.

Обозначим такую алгебру через AF(G,T,ΓT ) и назовем ее алгеброй
нечётных транспозиций. В случае, когда ΩT состоит из одного числа,
т.е. (G,T ) является группой строго n-транспозиций, мы пишем
AF(G,T, η).
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Алгебра строго p-транспозиций

Пусть (G,T ) группа строго p-транспозиций, A = AF(G,T, η)

Утверждение
Алгебра A коммутативна тогда и только тогда, когда p = 3.

Утверждение
Для любого a ∈ T линейные операторы La и Ra примитивны и
полупросты.
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Аксиальность

Пусть η = −1/(p− 2)

Утверждение
Алгебра A является левоаксиальной с таблицей слияния
G(1− η, η − 1).

∗ 1 0 α β

1 1 ∅ α β
0 ∅ 1 + α+ 0 1 + α+ 0 β
α α 1 + α+ 0 1 + α+ 0 β
β β β β 1 + α+ 0

Таблица: Таблица слияния G(α, β)

И.Б. Горшков Аксиальные алгебры



утверждение
Пусть G+ = {0, 1, α},G− = {β}. (G+,G−)- Z2-градуировка G.

Теорема
Пусть (G,T ) – группа строго p-транспозиций и A = AF(G,T, η), где
η ∈ F такое, что 1, η(p− 2) + 1, 1− η и η − 1 – различные элементы
поля F. Справедливы следующие утверждения:

1 A не содержит правых и левых идеалов.
2 Для каждого идемпотента a ∈ T разложение A = A+

a ⊕A−
a задает

Z2-градуировку алгебры A. При этом Miy(A, T ) ≃ G/Z(G).
3 Если T – конечное множество, то Aut(A) – конечная группа.
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Определение
Алгебра A(T ) над полем F с базисом T называется алгеброй типа
GM(p, η), если выполнены следующие условия:

1 каждый элемент T является идемпотентом;
2 для любой пары элементов a, b ∈ T , ⟨⟨a, b⟩⟩ ≃ AF(D2p, I(D2p), η);
3 для любого элемента a ∈ T существует подмножество

Ωa = {t1, . . . } ⊆ T такое, что T = {a} ∪t∈Ωa (I(a, t) \ {a});
4 для любого a ∈ T , линейное отображение ϕa : A→ A,

определенное правилом ϕa(b) = ba для любого b ∈ T , является
автоморфизмом алгебры A.

теорема
Алгебра A = AF(G,T, η) является алгеброй типа GM(p, η).
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Теорема

Пусть A(T ) алгебра GM(p,− 1
p−2) типа.

1 Любой элемент a ∈ T является левой G(1+ 1
p−2 ,−(1+ 1

p−2)) осью.
2 Miy(A, T ) группа строго p-транспозиций.
3 A(T ) ≃ AF(Miy(A(T )), T ′,− 1

p−2).
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Гипотеза Бернсайда

Утверждение

Если любая d порожденная алгебра GM(p,− 1
p−2) типа конечномерна,

то группа B(d, p) конечна.
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