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Предисловие

Двенадцатая школа-конференция «Алгебры Ли, алгебраические группы и
теория инвариантов» проходила в Москве с 26 по 31 января 2026 года. Её орга-
низаторами были Лаборатория алгебраических групп преобразований ФКН
НИУ ВШЭ, Математический институт имени В.А. Стеклова РАН, Москов-
ский государственный университет имени М.В. Ломоносова и Самарский на-
циональный исследовательский университет имени академика С.П. Королёва
(информацию о предыдущих школах см. на сайте https://lie-school.ru).

Программный комитет школы-конференции: И.В. Аржанцев (НИУ ВШЭ),
М.Х. Гизатуллин (Самара), С.О. Горчинский (Математический институт им.
В.А. Стеклова РАН), М.В. Игнатьев (НИУ ВШЭ), А.Н. Панов (Самарский
университет), В.А. Петров (СПбГУ), Д.А. Тимашёв (МГУ им. М.В. Ломоно-
сова), О.К. Шейнман (Математический институт им. В.А. Стеклова РАН),
К.А. Шрамов (Математический институт им. В.А. Стеклова РАН).

Организационный комитет школы-конференции: И.В. Аржанцев (НИУ
ВШЭ), Т.В. Вилкин (НИУ ВШЭ), С.А. Гайфуллин (НИУ ВШЭ), С.О. Гор-
чинский (Математический институт им. В.А. Стеклова РАН), П.И. Евдоки-
мова (НИУ ВШЭ), Ю.И. Зайцева (НИУ ВШЭ), М.В. Игнатьев (НИУ ВШЭ),
А.Н. Панов (Самарский университет), Д.А. Тимашёв (МГУ им. М.В. Ломо-
носова).

Участниками школы были студенты, аспиранты и молодые учёные. Им
были прочитаны следующие лекционные курсы:

• Мономиальные базисы неприводимых представлений полупростых ал-
гебр Ли
(Андрей Александрович Горницкий, МГУ им. М.В. Ломоносова).

ПустьG— односвязная связная простая комплексная группа Ли. В курсе
речь пойдет о способе построения некоторых базисов в каждом конечно-
мерном комплексном линейном представлении G, предложенном в рабо-
те Фанга, Фурье и Литтельмана (essential bases and toric degenerations
arising from birational sequences). Этот способ обобщает многие пред-
ложенные ранее способы, например, так получаются струнные базисы
Литтельмана, базисы Люстига, базисы FFLV-типа (Feigin–Fourier–Littel-
mann–Vinberg) и др. Как правило, такие базисы вводились для построе-
ния плоских торических вырождений сферических многообразий, одна-
ко этим пределы их использования не ограничиваются. Мы обсудим, как
они находят применение при решении задачи о тензорном разложении
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неприводимых представлений, а также более общей задачи ветвления
представлений. Предполагается, что слушатели знакомы со структур-
ной теорией полупростых групп и алгебр Ли, желательно знакомство с
теорией старшего веса.

• Введение в дифференциальную теорию Галуа
(Сергей Олегович Горчинский, Математический институт им. В.А. Стек-
лова РАН).

Теория Галуа исследует симметрии у решений уравнений и позволяет
применять методы теории групп для описания различных свойств реше-
ний. Мы рассмотрим дифференциальную теорию Галуа, относящуюся к
решениям систем линейных дифференциальных уравнений. В этом слу-
чае симметрии образуют алгебраические группы, а решения образуют
векторные пространства, являющиеся представлениями групп симмет-
рий.

Будет дано общее введение в дифференциальную теорию Галуа. В каче-
стве одного из приложений будет рассказано, почему гауссов интеграл
не берется в элементарных функциях.

• Аксиальные алгебры
(Илья Борисович Горшков, Институт математики им. С.Л. Соболева СО
РАН).

Аксиальные алгебры — это недавно разработанный класс неассоциатив-
ных алгебр, неразрывно связанных с группами. В качестве мотивирую-
щих примеров можно привести йордановы алгебры, связанные с класси-
ческими и некоторыми исключительными алгебраическими группами,
алгебры Мацуо, связанные с группами с 3-транспозициями, и алгебру
Грисса, использованную для реализации спорадической простой группы
Монстр. В рамках данного мини-курса будет представлена общая теория
аксиальных алгебр. Слушатели познакомятся с ключевыми определени-
ями и конструкциями, увидят ряд важных примеров и проследят их
связи с другими разделами алгебры.

• Алгебраические моноиды
(Юлия Ивановна Зайцева, НИУ ВШЭ).

Алгебраической полугруппой называется алгебраическое многообразие
X с ассоциативным умножением X ×X → X, являющимся морфизмом
алгебраических многообразий. Алгебраическая полугруппа называется
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алгебраическим моноидом, если в ней есть нейтральный элемент. Про
алгебраические полугруппы и моноиды известно довольно много. На-
пример, можно доказать, что в любой алгебраической полугруппе есть
идемпотент, а в любой коммутативной алгебраической полугруппе число
идемпотентов конечно. При помощи идемпотентов можно изучать струк-
турную теорию полугрупп, например, описать максимальные подмонои-
ды и подгруппы в X.
Группа G обратимых элементов алгебраического моноида X является
алгебраической группой, открытой по Зарисскому в X. При этом G аф-
финная тогда и только тогда, когда многообразие X аффинное. В этом
случае структуры моноида с группой обратимых элементов G находят-
ся во взаимно-однозначном соответствии с групповыми вложениями G
в X. Это помогает классифицировать алгебраические моноиды в случае
некоторых типов групп. Так, для редуктивных групп можно использо-
вать теорию представлений со старшим весом, а для унипотентных групп
изучать действия аддитивной группы поля с помощью локально ниль-
потентных дифференцирований алгебры регулярных функций на X.
В курсе лекций мы докажем различные свойства произвольных алгеб-
раических полугрупп и моноидов, обсудим классификацию редуктивных
моноидов и некоторые результаты в разрешимых случаях.

• Проблема Серра о проективных модулях и гипотеза Басса–Квиллена
(Анастасия Константиновна Ставрова, ПОМИ РАН).
В 1976 году Дэниел Квиллен и Андрей Суслин независимо доказали, что
любой конечно-порожденный проективный модуль над кольцом много-
членов k[x1, . . . , xn] над полем k свободен. Этот замечательный результат
явился решением так называемой проблемы Серра, возникшей в его ста-
тье 1955 года «Faisceaux algébriques cohérents». С геометрической точки
зрения теорема Квиллена–Суслина выглядит совершенно естественной
— она утверждает, что любое алгебраическое векторное расслоение на
аффинном пространстве Ak

n является тривиальным. Аналогичное утвер-
ждение для обычных, топологических, векторных расслоений верно да-
же для произвольного стягиваемого пространства. Тем не менее, име-
ющиеся доказательства проблемы Серра — скорее алгебраические, чем
геометрические, а их самая геометричная часть, неожиданно, связана с
описанием расслоений на проективной прямой P1. В ходе лекций мы об-
судим наиболее известное доказательство Квиллена, а также более «эле-
ментарное» доказательство Васерштейна.
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Уже в момент решения проблемы Серра Квилленом и Суслиным спе-
циалистам было известно, что эта красивая задача является только ча-
стью гораздо более общего утверждения, называемого в настоящее время
гипотезой Басса–Квиллена: если R — произвольное регулярное комму-
тативное кольцо, то любой конечно-порожденный проективный модуль
над R[x] «постоянен» в том смысле, что он получается из некоторого
модуля над R расширением скаляров до R[x]. Регулярные кольца явля-
ются довольно прямолинейным обобщением координатных колец глад-
ких алгебраических многообразий — одно из стандартных определений
регулярности по сути и говорит, что размерность кольца в окрестности
любой точки его спектра равна размерности касательного пространства
в этой точке. В частности, регулярным является кольцо многочленов
k[x1, . . . , xn], поэтому, учитывая, что модули над полем свободны, про-
блема Серра легко следует из гипотезы Басса–Квиллена индукцией по n.
Обратно, как было показано Линделом (1981) и Попеску (1989), решение
проблемы Серра влечет гипотезу Басса–Квиллена для всех регулярных
колец, содержащих поле.

Другой важный класс регулярных колец — дедекиндовы кольца, вклю-
чающие в себя, в частности, кольцо Z и другие кольца целых алгебраи-
ческих чисел. Эти кольца — в точности регулярные кольца размерности
1, то есть их можно рассматривать как обобщенные гладкие кривые. Об
этом часто забывают, но, на самом деле, и Квиллен, и Суслин в своих
статьях 1976 года доказали гипотезу Басса–Квиллена для колец много-
членов не только над полями, но и над дедекиндовыми кольцами. Более
того, еще в 1965 году Паваман Мурти доказал гипотезу Басса–Квиллена
для локальных регулярных колец размерности 2. К сожалению, их рас-
суждения пока не удается обобщить на более высокие размерности, и
гипотеза Басса–Квиллена в общем случае остается широко открытой.

В 2017 году Аравинд Асок, Марк Оуа и Маттиас Вендт заметили, что
некоторые результаты по гипотезе Басса–Квиллена могут быть обобще-
ны с векторных расслоений на главные G-расслоения, где G — редук-
тивная алгебраическая группа над полем k. А именно, оказалось, что
для любой изотропной редуктивной группы G над полем k и любого
регулярного кольца R, содержащего k, любое главное G-расслоение на
R[x], являющееся локально тривиальным в топологии Зариского, рас-
ширено с R. Таким образом, перед нами встал уже обобщенный вари-
ант гипотезы Басса–Квиллена, который утверждает, что аналогичный
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результат должен иметь место для всех регулярных колец R и изотроп-
ных редуктивных групп (вернее, групповых схем), определенных над R.
Как часто бывает в математике, это позволило взглянуть на проблему
свежим взглядом и получить первое за много лет продвижение и в ори-
гинальной гипотезе — Нинг Гуо и Фей Лью (2025) обобщили теорему
Линдела–Попеску на регулярные кольца, гладкие над дедекиндовыми
кольцами. В заключительной части нашего курса мы обсудим некото-
рые новые случаи обобщенной гипотезы Басса–Квиллена, в том числе,
полученные автором.

Сборник содержит тезисы докладов участников школы-конференции.

Мероприятие проводится в рамках Программы фундаментальных иссле-
дований НИУ ВШЭ в 2026 году и при финансовой поддержке Минобрнауки
России (грант на создание и развитие МЦМУ МИАН, соглашение № 075-15-
2025-303).

Оргкомитет
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Группы автоморфизмов
полных тороидальных орисферических многообразий

Р.С. Авдеев
НИУ ВШЭ, Москва, Россия

suselr@yandex.ru

Пусть K — алгебраически замкнутое поле нулевой характеристики и Ga =
(K,+) — аддитивная группа поля K. Если группа Ga нетривиально действует
на неприводимом алгебраическом многообразии X, то её образ H в группе
автоморфизмов многообразия X называется Ga-подгруппой на X. Пусть те-
перь на X регулярно действует алгебраическая группа F . Если F нормали-
зует группу H, то H называется F -корневой подгруппой на X. В этом случае
F действует на одномерной алгебре Ли LieH умножением на характер χ,
называемый весом F -корневой подгруппы H.

Пусть T — алгебраический тор. Нормальное неприводимое T -многообразие
X называется торическим, если оно обладает открытой T -орбитой. Важ-
ную роль при изучении групп автоморфизмов торических T -многообразий
играют T -корневые подгруппы. Полное описание всех T -корневых подгрупп
на произвольном торическом многообразии X хорошо известно и восходит к
знаменитой работе Демазюра [3]. Оказывается, что всякая T -корневая под-
группа на X однозначно определяется своим весом, а множество весов всех
T -корневых подгрупп на X (эти веса называются корнями Демазюра) допус-
кает комбинаторное описание в терминах веера, задающего многообразие X.
Если вдобавок X является полным, то тогда тор T и все T -корневые под-
группы (их конечное число в этом случае) порождают связную компоненту
единицы группы автоморфизмов многообразия X.

Пусть теперь G — произвольная связная редуктивная группа. Естествен-
ным обобщением понятия торического многообразия для G-многообразий
служит понятие сферического многообразия. А именно, нормальное неприво-
димое G-многообразие X называется сферическим, если оно обладает откры-
той орбитой для индуцированного действия борелевской подгруппы B ⊂ G.
В работе [1] в качестве обобщения T -корневых подгрупп на торических T -
многообразиях было предложено изучать B-корневые подгруппы на сфери-
ческих G-многообразиях.

Дополнительная мотивация для изучения B-корневых подгрупп возника-
ет при описании групп автоморфизмов полных сферических многообразий.
Известно, что для полного сферического многообразия X связная компонен-
та единицы A его группы автоморфизмов является линейной алгебраической
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группой. Если считать действие группы G на X эффективным, то можно
отождествить G с подгруппой в A, и тогда алгебра Ли LieA допускает раз-
ложение

LieA = LieG⊕ LieS ⊕
m⊕
i=1

ai, (1)

где S — некоторый подтор в A, централизующий группу G, а каждое слагае-
мое ai — это простой G-модуль, старший вектор которого порождает алгебру
Ли некоторой B-корневой подгруппы в A. Заменяя G на GS, можно считать
LieS = {0}, и тогда полное описание всех B-корневых подгрупп на X поз-
воляет вычислить LieA как G-модуль, а последующее нахождение всех ком-
мутационных соотношений между слагаемыми в (1) позволяет восстановить
структуру алгебры Ли на LieA. Отметим, что в торическом случае (когда
G = B = T — тор) все слагаемые ai в (1) автоматически одномерны и нахо-
дятся в естественной биекции с корнями Демазюра, причём коммутационные
соотношения между ними также хорошо известны.

Сферическое G-многообразие X называется орисферическим, если стаби-
лизатор точки общего положения вX содержит максимальную унипотентную
подгруппу группы G, и тороидальным, если никакая G-орбита в X не содер-
жится вB-инвариантном простом дивизоре, не являющемсяG-инвариантным.
Орисферические многообразия по некоторым свойствам напоминают тори-
ческие многообразия и потому представляют собой наиболее доступный для
изучения класс сферических многообразий. Ещё более близкими к ториче-
ским являются тороидальные орисферические многообразия.

В работе [2] получено частичное описание B-корневых подгрупп на ори-
сферических многообразиях. В случае полных тороидальных орисфериче-
ских многообразий это описание оказывается исчерпывающим и позволяет
полностью описать связную компоненту единицы группы автоморфизмов со-
ответствующего многообразия, о чём и планируется рассказать в докладе.
Исследования поддержаны грантом РНФ 25-11-00302.

Список литературы
[1] I. Arzhantsev, R. Avdeev. Root subgroups on affine spherical varieties. Selecta
Math. (N. S.) 28 (2022), no. 3, article 60, see also arXiv: math.AG/2012.02088.
[2] R. Avdeev, V. Zhgoon. Root subgroups on horospherical varieties, arXiv:
math.AG/2312.03377 (2023).
[3] M. Demazure. Sous-groupes algébriques de rang maximum du groupe
de Cremona. Ann. Sci. Éc. Norm. Supér. (4) 3 (1970), no. 4, 507–588.
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Подалгебры Бореля в алгебрах Ли векторных полей
И.В. Аржанцев

ФКН НИУ ВШЭ, Москва, Россия
arjantsev@hse.ru

Доклад основан на совместной работе с М.Г. Зайденбергом [1]. Мы рас-
сматриваем разрешимые подалгебры в алгебрах Ли дифференцирований аф-
финных алгебр и в касательных алгебрах групп автоморфизмов аффинных
алгебраических многообразий над алгебраически замкнутыми полями нуле-
вой характеристики. Определяем интегрируемые подалгебры Бореля и дока-
зываем, что это в точности касательные алгебры подгрупп Бореля группы
автоморфизмов. Приводятся примеры, когда интегрируемая подалгебра Бо-
реля не является подалгеброй Бореля, то есть максимальной разрешимой
подалгеброй. Детально изучается случай алгебры Ли дифференцирований
кольца многочленов от небольшого числа переменных и касательной алгеб-
ры группы автоморфизмов аффинного пространства размерности не выше 3.

Исследования поддержаны грантом РНФ 25–11–00302.

Список литературы
[1] I. Arzhantsev, M. Zaidenberg. Borel subalgebras of Lie algebras of vector fields,
arXiv: math.AG/2510.17223v2 (2025).

6j-символы для алгебры Ли gln
Д.В. Артамонов

МГУ им. М.В. Ломоносова, Москва, Россия
artamonovdv@my.msu.ru

Доклад основан на работе автора [1].
Рассмотрим неприводимые представления V 1, V 2, V 3 данной алгебры и

рассмотрим их тензорное произведение V 1 ⊗ V 2 ⊗ V 3. Скобки в данном про-
изведении могут быть расставлены двумя способами:

(V 1 ⊗ V 2)⊗ V 3 или V 1 ⊗ (V 2 ⊗ V 3).

Соответственно, в сумму неприводимых V 1⊗V 2⊗V 3 можно раскладывать
двумя способами.

1. Первый способ. Сначала раскладываем на неприводимые V 1 ⊗ V 2:

V 1 ⊗ V 2 =
⊕
U

MultV
1,V 2

U ⊗ U, (1)
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где U — неприводимое представление, а MultV
1,V 2

U — пространство кратно-
сти. Это векторное пространство, не снабженное действием g. Умножая (1)
тензорно на V 3 справа, получаем

(V 1 ⊗ V 2)⊗ V 3 =
⊕
U,W

MultV
1,V 2

U ⊗MultU,V
3

W ⊗W (2)

2. Второй способ. Сначала раскладываем V 2 ⊗ V 3:

V 2 ⊗ V 3 =
⊕
U

MultV
2,V 3

H ⊗H, (3)

и далее

V 1 ⊗ (V 2 ⊗ V 3) =
⊕
H,W

MultV
2,V 3

H ⊗MultV
1,H

W ⊗W. (4)

Имеется изоморфизм Φ: (V 1 ⊗ V 2)⊗ V 3 → V 1 ⊗ (V 2 ⊗ V 3), который даёт
отображение

Φ:
⊕
U

MultV
1,V 2

U ⊗MultU,V
3

W →
⊕
H

MultV
2,V 3

H ⊗MultV
1,H

W (5)

Определение. Отображение Рака — это индуцированное Φ отображение

R

{
V 1 V 2 U

V 3 W H

}
:MultV

1,V 2

U ⊗MultU,V
3

W →MultV
2,V 3

H ⊗MultV
1,H

W . (6)

После выбора базиса в пространствах кратности появляются матричные
элементы данного отображения. Они называются коэффициентами Рака. Из
этого определения ясно значение данных коэффициентов с точки зрения тео-
рии представлений. Рассмотрим категорию конечномерных представлений и
перейдём к её кольцу Гротендика. Фактически это означает переход от ка-
тегории представлений к кольцу их характеров. При этом переходе теряется
часть информации о категории представлений. Например, информация, за-
ключенная в коэффициентах Рака. В некоторых случаях по кольцу Гротен-
дика и коэффициентам Рака категория представлений восстанавливается.

Пусть s1, s2, s3, s3 — индексы базисных векторов в четырёх пространствах
кратности, участвующих в формуле (6). Пусть s̄i — индексы двойственных
базисных векторов в двойственных пространствах. Тогда 6j-символ опреде-
ляется следующим образом через коэффициент Рака:
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{
V 1 V 2 U
V 3 W H

}s1,s2

s3,s4

:= R

{
V 1 V 2 U
V 3 W H

}s̄1,s̄2

s3,s4

При вычислении проще работать именно с 6j-символами.
Общая формула для 6j-символа даже для gl3 была неизвестна до недавне-

го времени. Явные формулы были получены только для некоторых классов
представлений.

В докладе будет приведена конструкция индексов si (правда, перечис-
ляющие не базисные векторы, а порождающие векторы в соответствующем
пространстве кратности) и приведена явная формула для произвольного 6j-
символа для алгебры gln.

Список литературы
[1] Д.В. Артамонов. Вычисление 6j-символов для алгебры Ли gln. Сиб. ма-
тем. журн. 66 (2025), no. 4, 551–569, см. также arXiv: math.RT/2405.05628v2.

Локальные и 2-локальные антидифференцирования
разрешимых алгебр Ли

Х.О. Атажонов
Национальный университет Узбекистана имени Мирзо Улугбека,

Ташкент, Узбекистан
atajonovxusainboy@gmail.com

Доклад основан на работе автора [1].
Понятие δ-дифференцирований было введено В. Филипповым для алгебр

Ли в работах [3], [4]. Пространство δ-дифференцирований включает обычные
дифференцирования (δ = 1), антидифференцирования (δ = −1), а также эле-
менты центроида. Понятие локальных дифференцирований было введено в
1990 году Кадисоном [5], а также Ларсоном и Суруром [6]. Позднее, в 1997
году, Шемрль ввёл понятия 2-локальных дифференцирований и 2-локальных
автоморфизмов алгебр [7]. Исследование локальных и 2-локальных δ-диффе-
ренцирований алгебр Ли было начато в работе [9] А. Худойбердиева и Б. Юс-
упова. В частности, в [9] были введены понятия локальных и 2-локальных
δ-дифференцирований, а также описаны локальные и 2-локальные 1

2-диф-
ференцирования конечномерных разрешимых алгебр Ли с филиформным,
гейзенберговым и абелевым нильрадикалами.
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Определение 1. Пусть (L, [−,−]) — алгебра с умножением [−,−]. Ли-
нейное отображение φ называется δ-дифференцированием, если для любых
x, y ∈ L выполняется

φ[x, y] = δ
(
[φ(x), y] + [x, φ(y)]

)
,

где δ принадлежит основному полю F.
Определение 2. Линейное отображение ∆ называется локальным δ-диф-

ференцированием, если для любого x ∈ L существует δ-дифференцирование
φx : L → L (зависящее от x) такое, что ∆(x) = φx(x). Множество всех ло-
кальных δ-дифференцирований алгебры L обозначается через LocDerδ(L).

Определение 3. Отображение ∇ : L → L (не обязательно линейное) на-
зывается 2-локальным δ-дифференцированием, если для любых x, y ∈ L су-
ществует δ-дифферен-цирование φx,y ∈ Derδ(L) такое, что

∇(x) = φx,y(x), ∇(y) = φx,y(y).

Для произвольной алгебры Ли L определим производную и центральную
серии следующим образом:

L[1] = L, L[s+1] = [L[s],L[s]], s ≥ 1,

L1 = L, Lk+1 = [Lk,L], k ≥ 1.

Определение 4. n-мерная алгебра Ли L называется разрешимой (ниль-
потентной), если существует s ∈ N (k ∈ N) такое, что L[s] = {0} (Lk = {0}).
Такое минимальное число называется индексом разрешимости (нильпотент-
ности).

Все разрешимые алгебры Ли, нильрадикал которых является естествен-
но градуированной филиформной алгеброй Ли nn,1, классифицированы в [8]
(n ≥ 4). Более того, разрешимые алгебры Ли, нильрадикал которых является
естественно градуированной филиформной алгеброй Ли Q2n, классифициро-
ваны в [2]. Доказано, что размерность разрешимой алгебры Ли, нильрадикал
которой изоморфен n-мерной естественно градуированной филиформной ал-
гебре Ли, не превышает n+ 2.

Ниже приводится список таких разрешимых алгебр Ли. Обозначим через
sin,1 разрешимые алгебры Ли с нильрадикалом nn,1 и коразмерности один, а
через sn,2 — коразмерности два:

s1n,1(β) : [ei, e1] = ei+1, 2 ≤ i ≤ n− 1,

[e1, x] = e1, [ei, x] = (i− 2 + β)ei, 2 ≤ i ≤ n;

s2n,1 : [ei, e1] = ei+1, 2 ≤ i ≤ n− 1, [ei, x] = ei, 2 ≤ i ≤ n;

s3n,1 : [ei, e1] = ei+1, 2 ≤ i ≤ n− 1,

[e1, x] = e1 + e2, [ei, x] = (i− 1)ei, 2 ≤ i ≤ n;
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s4n,1(α3, α4, . . . , αn−1) : [ei, e1] = ei+1, 2 ≤ i ≤ n− 1, [ei, x] =

ei +
n∑

l=i+2

αl+1−iel, 2 ≤ i ≤ n;

sn,2 :

{
[ei, e1] = ei+1, 2 ≤ i ≤ n− 1, [e1, x1] = e1,

[ei, x1] = (i− 2)ei, 3 ≤ i ≤ n, [ei, x2] = ei, 2 ≤ i ≤ n.
Любая комплексная разрешимая алгебра Ли размерности 2n + 1 с ниль-

радикалом, изоморфным Q2n, изоморфна одной из следующих алгебр:

r2n+1(λ) :


[ei, e1] = ei+1, 2 ≤ i ≤ 2n− 2, [ei, e2n+1−i] = (−1)ie2n, 2 ≤ i ≤ n,

[e1, x] = e1, [ei, x] = (i− 2 + λ)ei, 2 ≤ i ≤ 2n− 1,

[e2n, x] = (2n− 3 + 2λ)e2n;

r2n+1(2− n, ε) :
[ei, e1] = ei+1, 2 ≤ i ≤ 2n− 2, [ei, e2n+1−i] = (−1)ie2n, 2 ≤ i ≤ n,

[e1, x] = e1 + εe2n, ε = −1, 1, [ei, x] = (i− n)ei, 2 ≤ i ≤ 2n− 1,

[e2n, x] = e2n;

r2n+1(λ5, . . . , λ2n−1) :
[ei, e1] = ei+1, 2 ≤ i ≤ 2n− 2, [ei, e2n+1−i] = (−1)ie2n, 2 ≤ i ≤ n,

[e2+i, x] = e2+i +
[ 2n−2−i

2 ]∑
k=2

λ2k+1e2k+1+i, 0 ≤ i ≤ 2n− 6,

[e2n−i, x] = e2n−i, i = 1, 2, 3, [e2n, x] = 2e2n.

Кроме того, первый ненулевой параметр λ2k+1 может быть нормирован
до 1.

Наконец, для любого n ≥ 3 существует только одна разрешимая алгебра
Ли r2n+2 размерности 2n+ 2 с нильрадикалом, изоморфным Q2n:

r2n+2 :


[ei, e1] = ei+1, 2 ≤ i ≤ 2n− 2, [ei, e2n+1−i] = (−1)ie2n, 2 ≤ i ≤ n,

[ei, x1] = iei, 1 ≤ i ≤ 2n− 1, [e2n, x1] = (2n+ 1)e2n,

[ei, x2] = ei, 2 ≤ i ≤ 2n− 1, [e2n, x2] = 2e2n.

Теорема 1. Разрешимые алгебры Ли s1n,1(β), s
2
n,1, s

3
n,1, s

4
n,1(α3, . . . , αn−1),

r2n+1(λ), r2n+1(2−n, ε), и r2n+1(λ5, . . . , λ2n−1) допускают локальное антидиф-
ференцирование, которое не является антидифференцированием.
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Теорема 2. Любое 2-локальное антидифференцирование алгебр s1n,1(β),
s2n,1, s

3
n,1, s4n,1(α3, . . . , αn−1), sn,2, τ2n+1(λ), τ2n+1(2−n, ε), τ2n+1(λ5, λ6, . . . , λ2n−1),

и τ2n+2 является антидифференцированием.

Список литературы
[1] S. Ayupov, K. Atajonov, B. Yusupov. Local and 2-local anti-derivations on
solvable Lie algebras. European Journal of Mathematics 11 (2025), article 52,
https://doi.org/10.1007/s40879-025-00841-w.
[2] J. M. Ancochea Bermúdez, R. Campoamor-Stursberg, L. Garćıa Vergnolle.
Solvable Lie algebras with naturally graded nilradicals and their invariants. Journal
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[3] V. Filippov. On δ-derivations of Lie algebras. Siberian Mathematical Journal
39 (1998), no. 6, 1218–1230.
[4] V. Filippov. δ-Derivations of prime Lie algebras. Siberian Mathematical Journal
40 (1999), no. 1, 174–184.
[5] R. Kadison. Local derivations. Journal of Algebra 130 (1990), 494–509.
[6] D. Larson, A. Sourour. Local derivations and local automorphisms of B(X).
Proceedings of Symposia in Pure Mathematics 51 (1990), 187–194.
[7] P. Šemrl. Local automorphisms and derivations on B(H). Proceedings of the
American Mathematical Society 125 (1997), 2677–2680.
[8] L. Šnobl, P. Winternitz. A class of solvable Lie algebras and their Casimir
invariants. Journal of Physics A: Mathematical and Theoretical 38 (2005), no. 12,
2687–2700.
[9] A.Kh. Khudoyberdiyev, B.B. Yusupov. Local and 2-local 1

2-derivation on finite-
dimensional Lie algebras. Results in Mathematics 79 (2024), article 210.

Проективные гиперповерхности высоких степеней,
допускающие индуцированное аддитивное действие

И.С. Бельдиев
ФКН НИУ ВШЭ, Москва, Россия

ivbeldiev@gmail.com

Аддитивным действием называется эффективное регулярное действие ал-
гебраической группы Gm

a на алгебраическом многообразии X. В случае, ко-
гда X является замкнутым подмногообразием в проективном пространстве
Pn, можно рассматривать так называемые индуцированные аддитивные дей-
ствия, то есть аддитивные действия на X, которые могут быть продолжены
до регулярного действия на объемлющем проективном пространстве.
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Наиболее хорошо изучен случай, когда X является проективной гиперпо-
верхностью. Например, доказано, что степень проективной гиперповерхно-
сти в Pn не превосходит n. Кроме того, для каждого k от 2 до n существует
невырожденная гиперповерхность (то есть гиперповерхность, не изоморф-
ная проективному конусу над гиперповерхностью в меньшем проективном
пространстве) X ⊆ P n степени k, допускающая индуцированное аддитивное
действие. Известно, что такая гиперповерхность единственна (с точностью
до изоморфизма) в экстремальных случаях k = 2 и k = n.

Мы рассматриваем случай гиперповерхностей высоких степеней. А имен-
но, мы даём полную классификацию таких гиперповерхностей степеней n−1,
n− 2 и n− 3.

Доклад основан на статье [1] и подготовлен в ходе проведения исследова-
ния в рамках проекта «Международное академическое сотрудничество» НИУ
ВШЭ.

Список литературы
[1] I. Beldiev. Projective hypersurfaces of high degree admitting an induced
additive action. Bulletin of the Malaysian Mathematical Sciences Society 48
(2025), article 195.

Алгебры Ли, порождённые однородными дифференцированиями
кольца частичных полиномов Лорана

О.Т. Боковикова
МГУ им. М.В. Ломоносова, Москва, Россия

olbokovikova@gmail.com

Пусть K — поле характеристики ноль. Обозначим через

As,n = K[x±1
1 , . . . , x±1

s , xs+1, . . . , xn]

кольцо частичных полиномов Лорана над полем K в n переменных, где пер-
вые s переменных обратимы.

В кольце As,n можно ввести естественную Zn-градуировку:

As,n =
⊕

(a1,...,an)∈Zn

Kxa11 . . . x
an
n .

Относительно данной градуировки однородные дифференцирования кольца
As,n имеют один из следующих двух типов.
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Тип I. Дифференцирования вида

∇a
i = λxa11 . . . x

ai−1

i−1 x
ai+1

i+1 . . . x
an
n

∂

∂xi
,

где a = (a1, . . . , ai−1, 0, ai+1, . . . , an) ∈ Zs ⊕ Zn−s
≥0 , i > s, λ ∈ K. Такие

дифференцирования являются локально нильпотентными.
Тип II. Дифференцирования вида

∆p
β = xp11 . . . x

pn
n

n∑
j=1

βjxj
∂

∂xj
,

где p = (p1, . . . , pn) ∈ Zs ⊕ Zn−s
≥0 , β = (β1, . . . , βn) ∈ Kn.

Вопрос конечномерности алгебры Ли, порождённой конечным числом од-
нородных дифференцирований, активно изучался в последние годы. В рабо-
тах [1], [2] получен критерий для дифференцирований типа I в кольце мно-
гочленов, а в работе [3] — для дифференцирований типа II также в кольце
многочленов, причём критерий сформулирован в терминах ориентированного
графа, ассоциированного с множеством дифференцирований.

Расширяя графовый подход на случай кольца As,n, появляются новые
ограничения, возникающие из-за обратимых переменных. Основной резуль-
тат доклада приводится в следующей теореме.

Теорема. Пусть D = {∆p(1)
β(1), . . . ,∆

p(m)
β(m)} — множество дифференцирований

типа II кольца As,n. Если ассоциированный с множеством D ориентирован-
ный граф содержит цикл длины строго больше s + 1, то порождённая мно-
жеством D алгебра Ли g(D) является бесконечномерной.

В докладе будет приведён пример, иллюстрирующий точность полученной
оценки на длину цикла. Кроме того, для простейшего нетривиального случая
кольца A1,n будет представлен критерий, связывающий допустимую длину
ориентированных циклов с конечномерностью порождённой алгебры Ли.

Список литературы
[1] I. Arzhantsev, A. Liendo, T. Stasyuk. Lie algebras of vertical derivations on
semiaffine varieties with torus actions. J. Pure Appl. Algebra 225 (2021), no. 2,
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Нётеровость по уравнениям
двуступенно нильпотентных графовых групп

И.М. Бучинский
Институт математики им. С.Л. Соболева СО РАН, Омск, Россия

buchvan@mail.ru

Универсальная алгебраическая геометрия, или алгебраическая геометрия
над алгебраическими системами [1], [2], — это направление математики, за-
нимающееся исследованием решений уравнений над различными алгебраи-
ческими системами. Под уравнениями понимаются, как правило, атомарные
формулы языка алгебраической системы. Текущий доклад будет посвящен
алгебраической геометрии над группами [3]. В частности, будет рассматри-
ваться так называемый диофантов случай, то есть случай группового языка
с добавленными в него константными символами, взаимно однозначно соот-
ветствующими всем элементам группы. Таким образом, под уравнением от
переменных X = {x1, . . . , xn} над группой G мы имеем в виду равенство ви-
да w(X) = e, где w(X) — групповое слово от переменных X с константами из
G, или, что то же самое, это слово в группе F (X) ∗G, где F (X) — свободная
группа с базисом X.

Введём наиболее важные для нас понятия универсальной алгебраической
геометрии, следуя [1]. Несмотря на то, что эти понятия носят универсальный
характер, мы приведем их в адаптации на язык теории групп (см., напри-
мер, [3]).

Непустое (возможно, бесконечное) множество уравнений над группой G

называется системой уравнений над G. Точка g ∈ Gn называется решением
уравнения s(X), |X| = n, над группой G, если G |= s(g). Точка g ∈ Gn назы-
вается решением системы уравнений S(X), |X| = n, над группой G, если g

является решением каждого уравнения из системы S(X) над G. Две системы
уравнений над группой G называются эквивалентными, если их множества
решений (алгебраические множества) совпадают. Группа G называется нё-
теровой по уравнениям, если для любого целого положительного n любая
система уравнений S(X) над G от n переменных X эквивалентна своей неко-
торой конечной подсистеме S0(X) ⊆ S(X). Аналогичным образом вводится
понятие группы, нётеровой по уравнениям от одной переменной.

Нётеровость по уравнениям (или, следуя [2], геометрическая нётеровость)
является важным свойством для универсальной алгебраической геометрии.
Для нётеровых по уравнениям алгебраических систем существует общий тео-
ретический подход [1], [4] (объединяющие теоремы), позволяющий взглянуть
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на алгебраические множества с разных точек зрения. Также известно, что в
нётеровых по уравнениям алгебраических системах произвольное алгебраи-
ческое множество представимо в виде конечного объединения неприводимых
алгебраических множеств [1, Следствие 2.5.6]. Известно достаточно много
примеров нётеровых по уравнениям алгебраических систем. Например, нё-
теровыми по уравнениям являются конечные алгебраические системы, абе-
левы группы, линейные группы, гиперболические группы без кручения [1],
свободные разрешимые группы произвольных ступеней разрешимости и ран-
гов [5], конечно порождённые двуступенно нильпотентные группы [3], [6]. Из-
вестно также много и алгебраических систем, не являющихся нётеровыми по
уравнениям: например, сплетение неабелевой группы и бесконечной группы
[7], есть примеры двуступенно нильпотентных групп и конечно порождённых
центрально-метабелевых групп [5].

Обозначим через [g, h] = g−1h−1gh коммутатор элементов g и h группы G.
Группа G называется двуступенно нильпотентной, если [[g, h], t] = e для всех
g, h, t ∈ G. Из нормальной формы элементов известен общий вид уравнения
от переменных x1, . . . , xn над двуступенно нильпотентной группой G:

xα1
1 · · · xαn

n g

n∏
i=1

[xi, ai]
∏
i>j

[xi, xj]
βi,j = e,

где g, ai ∈ G, αi, βi,j ∈ Z.
Пусть Γ — простой неориентированный граф. Группа GΓ = ⟨X | R⟩ на-

зывается свободной частично коммутативной (или графовой), если X =
V (Γ) и

R = {[xi, xj] | xi и xj смежны в графе Γ}.
Граф Γ называется графом коммутативности частично коммутативной
группы GΓ. Графовые группы, или частично коммутативные группы, или
right-angled Artin groups, имеют множество замечательных свойств (удобные
нормальные формы элементов, разрешимость основных алгоритмических за-
дач, богатая структура подгрупп и многое другое; [8]). Ранее В.Н. Ремес-
ленниковым ставился вопрос об установлении связей между алгебраической
геометрией над такими группами и алгебраической геометрией над неориен-
тированными графами.

Основным результатом, который будет представлен на докладе, является
описание всех нётеровых по уравнениям двуступенно нильпотентных графо-
вых групп. Полученное описание фактически связывает свойство нётерово-
сти по уравнениям таких групп с нётеровостью по уравнениям их графов
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коммутативности. Нётеровы по уравнениям графы ранее уже были описаны
в [9]. Среди промежуточных результатов отметим, что в любых двуступенно
нильпотентных группах без кручения с изолированным коммутантом, не яв-
ляющихся нётеровыми по уравнениям от одной переменной, всегда найдется
бесконечная строго убывающая цепочка централизаторов. Кроме того, стало
понятно, что все двуступенно нильпотентные графовые группы аппроксими-
руются свободной двуступенно нильпотентной группой ранга 2.

Доклад основан на работе [10].
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Классификация регулярных и субрегулярных орбит
коприсоединённого действия максимальных унипотентных

подгрупп в группах типа Bn, Cn, Dn

М.С. Венчаков
НИУ ВШЭ, Москва, Россия
mihail.venchakov@gmail.com

Рассмотрим классические алгебраические группы типа Bn, Cn, Dn над ко-
нечным полем достаточно большой характеристики. Пусть U — максималь-
ная унипотентная подгруппа в любой из них. Неприводимые конечномерные
представления группы U , согласно методу орбит Кириллова (а точнее, его
модификации для конечных полей), находятся во взаимно однозначном со-
ответствии с орбитами коприсоединённого действия на пространстве, двой-
ственном к её алгебре Ли.

Я планирую посвятить доклад специальным классам таких орбит. Более
конкретно, мы можем рассмотреть представления, соответствующие орби-
там максимальной и предмаксимальной размерности при коприсоединённом
действии наших групп. Классификация таких орбит частично получена. На-
пример, есть классификация орбит максимальной размерности для типа Cn.
Я собираюсь рассказать об уже известных, а также новых результатах в этой
области.

Исследования поддержаны грантом РНФ 25–21–00219.

Гомотопические группы гладких торических многообразий
Ф.Е. Вылегжанин

Математический институт им. В.А. Стеклова РАН,
НИУ ВШЭ, Москва, Россия

vylegf@gmail.com

С точки зрения теории гомотопий, (рационально) гладкие торические мно-
гообразияXΣ над полем комплексных чисел тесно связаны с полиэдральными
произведениями — момент–угол-комплексами

ZK =
⋃
I∈K

(D2)×I × (S1)×[m]\I ⊂ (D2)m

и пространствами Дэвиса–Янушкевича

DJ(K) =
⋃
I∈K

(CP∞)×I ⊂ (CP∞)m
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(здесь K — симплициальный комплекс, соответствующий вееру Σ; его вер-
шины [m] = {1, . . . ,m} соответствуют лучам веера). Недавний прогресс в
изучении пространств петель ΩZK и ΩDJ(K) [1], [2] позволяет получить ре-
зультаты о гомотопических группах торических многообразий.

Теорема. [1] Пусть K — флаговый симплициальный комплекс (то есть,
любой набор попарно смежных вершин образует симплекс). Тогда имеем го-
мотопическую эквивалентность ΩZK ≃

∏
n≥3(ΩS

n)×Dn, где числа Dn ≥ 0
определяются из тождества∏

n≥3

(1− tn−1)Dn =
∑
J⊂[m]

(1− χ(KJ))t
|J | ∈ Z[[t]].

Следствие. Для любого d-мерного гладкого торического многообразия XΣ,
соответствующего флаговому комплексу K, имеем: π1(XΣ) = 0, π2(XΣ) ≃
Zm−d и

πN(XΣ) =
N⊕
n=3

πN(S
n)⊕Dn, N ≥ 3.

Для набора простых чисел P обозначим

Z[1/P ] = Z[1/p : p ∈ P ] ⊂ Q

локализацию кольца Z вне P . Эта конструкция имеет аналог в теории гомо-
топий.

Теорема. [2] Пусть множество P содержит все простые числа, не пре-
восходящие 2m, а также все простые числа p такие, что в H∗(ΩZK;Z) есть
p-кручение (заведомо достаточно взять все p ≤ 2m·22m). Тогда имеем 1/P -
локальную гомотопическую эквивалентность ΩZK ≃(1/P )

∏
n≥3(ΩS

n)×Dn, где
числа Dn ≥ 0 алгоритмически вычислимы (выражаются в терминах функ-
тора TorQ[K](Q,Q)). Следовательно, для любого гладкого торического мно-
гообразия имеем

π∗(XΣ)⊗ Z[1/P ] =
N⊕
n=3

πN(S
n)⊕Dn ⊗ Z[1/P ]

при ∗ ≥ 3.
Аналогичные результаты получены для односвязных торических орби-

фолдов. Для некоторых классов симплициальных комплексов (остовы фла-
говых комплексов, графы, склейки сильно смежностных комплексов) числа
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Dn можно описать более явно, и та же формула верна без локализации (это
неопубликованный результат, полученный совместно с Л. Стэнтоном).

Список литературы
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Обобщённо гибкие многообразия с инвариантным дивизором
С.А. Гайфуллин

МГУ им. М.В. Ломоносова, ФКН НИУ ВШЭ, Москва, Россия
sgayf@yandex.ru

Доклад основан в том числе на совместной работе с К. Шахматовым и
Д. Чунаевым (в процессе написания).

Пусть X — неприводимое аффинное алгебраическое многообразие над
алгебраически замкнутым полем нулевой характеристики. Будем называть
Ga-действиями алгебраические действия аддитивной группы основного по-
ля. Напомним, что точка x ∈ X называется гибкой, если её касательное
пространство порождается касательными векторами к орбитам Ga-действий.
Рассмотрим группу SAut(X) специальных автоморфизмов на X, то есть под-
группу в группе всех регулярных автоморфизмов, порождённую всеми алгеб-
раическими подгруппами, изоморфными аддитивной группе основного поля.
В работе [1] показано, что гибкие точки, если они есть, образуют откры-
тую SAut(X)-орбиту O ⊆ X. Многообразия, обладающие хотя бы одной (и
следовательно открытым множеством) гибких точек, называются обобщённо
гибкими. Если O совпадает с множеством гладких точек Xreg в X, то много-
образие называется гибким. Наконец, если коразмерность X \O в X не менее
2, то X называется гибким в коразмерности один.

Интерес к гибким многообразиям обусловлен тем, что в работе [1] для аф-
финных многообразий X размерности хотя бы 2 доказана эквивалентность
трёх условий: 1) гибкости X, 2) транзитивности действия SAut(X) на Xreg и
3) бесконечной транзитивности действия SAut(X) на Xreg. Последнее усло-
вие заключается в том, что для любого натурального m и для любых двух
упорядоченных наборов (a1, . . . , am) и (b1, . . . , bm) попарно различных точек
существует φ ∈ SAut(X) такой, что φ(aj) = bj для всех j.
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Ранее была известна только одна серия примеров обобщённо гибких, но
не гибких многообразий, построенная в работе [3]. Данная серия примеров
состоит из гладких поверхностей Гизатуллина, имеющих в дополнении к O

конечное число неподвижных точек. Соответственно, все эти примеры были
гибкими в коразмерности один.

В докладе мы обсудим построение серии многообразий, дающих приме-
ры обобщённо гибких, но не гибких в коразмерности один многообразий в
произвольной размерности не менее 4, см. [2]. Также будет доказано, что
при переходе от многообразия к его тотальному координатному пространству
обобщённая гибкость может не сохраняться, а гибкость в коразмерности один
сохраняется. Исследования поддержаны грантом РНФ 25-21-00277.
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О периодических компонентах нормализатора тора
в алгебраических группах

А.А. Гальт
Институт математики им. С.Л. Соболева СО РАН,

Новосибирск, Россия
galt84@gmail.com

Компонента связности аффинной алгебраической группы называется пе-
риодической, если все ее элементы имеют конечный порядок. В работе [1]
получена характеризация периодических компонент в терминах автоморфиз-
мов с конечным числом неподвижных точек. Полученные результаты были
применены к изучению нормализаторов максимальных торов в простых ал-
гебраических группах. А именно, для классических групп и исключительных
групп типа G2 были найдены порядки элементов в периодических компонен-
тах нормализатора тора. Позднее в работе [2] порядки элементов в перио-
дических компонентах нормализатора тора были найдены для всех простых
алгебраических групп.
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В докладе пойдет речь о некоторых смежных вопросах, связанных с пе-
риодическими компонентами. В частности, какую группу порождают пери-
одические элементы и чему равно число неподвижных точек автоморфизма
сопряжения периодическим элементом?

Работа выполнена в рамках государственного задания ИМ СО РАН, тема
FWNF–2026–0017.
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О гауссовой теории композиции целочисленных бинарных
квадратичных форм

М.Х. Гизатуллин
Самара, Россия
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Доклад основан на моих (пока неопубликованных) дополнениях к [1], то
есть к переведённому в 1959 году на русский язык сборнику арифметиче-
ских работ Гаусса 1879-го года издания. Имеются и переводы с латинского
на немецкий, на английский, изданные соответственно в 1889 и 1966. Пусть
SL2(Z) — линейная группа унимодулярных целочисленных 2 × 2-матриц,
D0 — ненулевое целое число. Примитивная (точнее, собственно примитив-
ная) бинарная квадратичная форма с детерминантом D0 — это f(x, y) =
ax2 + 2bxy + cy2, коэффициенты a, 2b, c — целые числа с единичным общим
делителем (и b — целое ), D0(f) = b2 − ac. При действии линейной уни-
модулярной замены переменных x, y все упомянутые свойства сохраняются.
Иногда рассматриваются формы f(x, y) = ax2+bxy+cy2, то есть допускается
и нечётный средний коэффициент b, их дискриминант — это D1(f) = b2−4ac.
Для таких чуть более общих целочисленных форм описание формы F , ока-
зывающейся композицией форм f, f ′ (кратко, F = f ∗ f ′), представлено сле-
дующим образом:

AX2 +BXY + CY 2 = (ax2 + bxy + cy2)(a′u2 + b′uv + c′v2),

X = pxu+ p′xv + p′′yu+ p′′′yv, Y = qxu+ q′xv + q′′yu+ q′′′yv,
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причём 2×2-миноры составленной из целых чисел p, p′, p′′, p′′′, q, q′, q′′, q′′′ мат-
рицы (

p p′ p′′ p′′′

q q′ q′′ q′′′

)
порождают тот же самый идеал, что и коэффициенты A,B,C формы F .

Отмечу, что далеко не для каждых двух форм f, f ′ определена компози-
ция, а если и определена, то может оказаться, что результаты F различны
(даже не обязательно GL2(Q)-эквивалентны!). Для последнего факта, не со-
всем точная аналогия — извлечение кубического корня из произведения двух
комплексных чисел.

После предыдущего пессимистического замечания отмечу, что для двух
примитивных форм с одинаковым детерминантом D0 (как и для двух при-
митивных форм, имеющих нечётный средний коэффициент и одинаковый
дискриминант D1) композиция всегда определена, результат — форма с та-
ким же дискриминантом. На самом деле, речь идёт о композиции классов
SL2(Z)-эквивалентности, но при этом классы описываются с помощью их ка-
нонических представителей. Для некоторых дискриминантов всё настолько
однозначно, что таблицы умножения классов представляют собой таблицу
умножения для абелевой группы, являющейся прямым произведением цик-
лических групп второго порядка. Точнее, как показал Гаусс, классы поло-
жительных примитивных форм, детерминант D0 которых — взятое со зна-
ком минус удобное число Эйлера (одно из шестидесяти пяти таких) — это
упомянутая абелева группа, порядок которой равен одному из чисел 1, 2,
4, 8, 16. Нейтральным элементом в таких группах является класс формы
f0(x, y) = x2 − D0y

2 (для форм с нечётной серединой, f0 = x2 + xy +my2).
Прочих представителей имеется три вида. Это, во-первых, обобщение преды-
дущей формы, т.е. mx2 − ny2 m < n, mn = D0, во-вторых, формы с двумя
совпадающими коэффициентами, точнее, 2bx2+2bxy+ cy2, ax2+2bxy+ ay2.

Если не считать f0, то среди упомянутых представителей нет так называ-
емых самодупликативных форм, то есть совпадающих со своей самокомпози-
цией: f = f∗f . Любопытно, что над полиномиальным кольцом Z[a0, a1, a2, a3],
где a0, a1, a2, a3 — независимые переменные, существует естественная самоду-
пликативная форма

(a21 − a0a2)x
2 + (a1a2 − a0a3)xy + (a22 − a1a3)y

2,

которая является нормированным гессианом бинарной кубики a0x3+3a1x
2y+

3a2xy
2 + a3y

3, и все примитивные самодупликативные бинарные квадратич-
ные формы (со средним коэффициентом произвольной чётности) получаются
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как гессианы кубик при подходящей целочисленной специализации величин
a0, a1, a2, a3. Добавлю, что каждая бинарная форма нечётной степени имеет
квадратичные коварианты, но пока не могу сказать ничего содержательного
о композиционных свойствах этих ковариантов.

Отмечу, что наличие форм, удовлетворяющих тождеству f = f ∗ f , за-
ставило Гаусса и многих его последователей искать и находить такие экви-
валентности SL2(Z)-классов квадратичных форм, при которых самодуплика-
тивные формы становятся эквивалентными нейтральному элементу с тем же
дискриминантом, а новые классы эквивалентности образуют группу относи-
тельно операции композиции. О других тождествах, инициирующих поиски
аналогичных укрупнений эквивалентностей, я не упоминаю. Наиболее по-
пулярные классы эквивалентности — так называемые роды (genera) форм,
причём иногда у разных математиков встречаются существенно разные опре-
деления рода. Для конструкции рода и для описания его свойств, Гаусс ис-
пользует мультипликативные (относительно композиции) характеры форм.
Эти характеры могут принимать лишь значения +1, −1. Моё объяснение
такой ограниченности значений — формулы

f0 = f ∗ f, f = f ∗ f ∗ f.

Кстати сказать, вторая формула позволяет построить много непримитивных
самодупликативных форм, это f(λ, µ)f , где λ, µ — целые числа, f(λ, µ) ̸= 0.

У меня другой подход к проблеме построения групп из форм. Не надо тасо-
вать SL2(Z)-классы по коллективам, надо воспользоваться упомянутой выше
таблицей композиционного умножения этих классов (с фиксированным дис-
криминантом) и выбрать подтаблицу, являющуюся таблицей умножения в
некоторой группе. Используя свободу выбора, предоставляемую табличными
клетками с двумя или тремя элементами. Отмечу, что даже для некоторых
самодупликативных форм f имеются три неэквивалентные формы, представ-
ляющие значения f ∗ f . И что для некоторых дискриминантов таблицы на-
столько богаты, что поиск групповой подтаблицы приводит к неизоморфным
группам. Например, для D0 = −365 положительные примитивные формы
позволяют сформировать две неизоморфные группы порядка 20. Одна — про-
изведение двух циклических групп порядков 2 и 10, другая — произведение
двух циклических групп порядков 4 и 5.

Список литературы
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Гипотеза Попова–Поммеренинга для групп ранга 3
З.И. Городилова
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Пусть K — алгебраичeски замкнутое поле нулевой характеристики, G —
линейная алгебраическая группа над K иX — аффинное алгебраическое мно-
гообразие, на котором задано регулярное действие группы G. Тогда возни-
кает линейное представление группы G в алгебре K[X] регулярных функций
на X, задаваемое формулой (g · f)(x) = f(g−1 · x) для всех g ∈ G, f ∈
K[X], x ∈ X. Проблема конечной порожденности алгебр инвариантов про-
извольных действий алгебраических групп на аффинных многообразиях на-
зывается 14-й проблемой Гильберта. В рамках данной проблемы известна
другая задача, в которой для алгебраической подгруппы H в группе G, дей-
ствующей на аффинном многообразии X, ставится вопрос о том, будет ли
алгебра инвариантов K[X]H конечно порожденной. В отличие от общей про-
блемы, тут рассматриваются только такие действия подгруппы H на много-
образии X, которые продолжаются до действия всей группы G на том же
многообразии.

Алгебраическая подгруппа H ⊂ G называется регулярной, если она нор-
мализуется некоторым максимальным тором группы G.

Гипотеза. (В.Л. Попов, К. Поммеренинг, конец 1970-х). Пусть G — связ-
ная редуктивная группа и H ⊂ G — регулярная подгруппа в G. Тогда для
всякого аффинного многообразия X с регулярным действием группы G ал-
гебра инвариантов K[X]H конечно порождена.

Согласно принципу переноса (см. [1, теорема 3.9] или [2, Proposition 6.8])
утверждение гипотезы равносильно конечной порожденности алгебры K[G]H ,
где H действует на G правыми сдвигами. Алгебра K[G]H , в свою очередь,
изоморфна алгебре регулярных функций на однородном пространстве G/H.
Таким образом, ответ на вопрос зависит только от пары (G,H). Проверку
данной гипотезы также можно свести к случаю, когда группа G полупроста,
а H унипотентна.

Пусть B — борелевская подгруппа в G, которая содержит максимальный
тор T и максимальную унипотентную подгруппу U,∆ — система корней груп-
пы G относительно тора T , ∆+ ⊂ ∆ — множество положительных корней
относительно B. Для проверки гипотезы достаточно рассматривать регуляр-
ные унипотентные подгруппы H, которые содержатся в U и нормализуются
тором T . Все такие подгруппы параметризуются замкнутыми относительно
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сложения подмножествами Φ ⊂ ∆+ [2, Lemma 3.3] и порождаются семейства-
ми корневых подгрупп {Uα | α ∈ Φ}.

Гипотеза доказана в следующих частных случаях:

1. G — группа типа An при n ≤ 4, B2 или G2 [3], [4];

2. H — унипотентный радикал параболической подгруппы в G [2];

3. H удовлетворяет условию |∆+\Φ| − 1 ≤ rk(∆+\Φ) [5].

Основным результатом доклада является следующая
Теорема 1. Гипотеза Попова–Поммеренинга верна для групп типов B3

и C3.
Из данной теоремы с учетом случая 1 вытекает
Следствие. Гипотеза Попова-Поммеренинга верна для всех полупростых

групп G ранга не выше 3.
Теорема 2. Гипотеза Попова–Поммеренинга верна для групп типа A5.
Для доказательства теорем 1 и 2 были классифицированы все регулярные

унипотентные подгруппы в группах рассматриваемых типов. Справедливость
гипотезы для части из них следует из упомянутых выше результатов 1–3, а
для оставшихся случаев идея доказательства заключается в следующем. Бе-
рется U− — противоположная к U подгруппа в G. В силу теоремы Хаджиева
[6] конечная порожденность алгебры K[G/H] равносильна конечной порож-
денности алгебры K[G/H]U

−
, где U− действует на G/H умножениями слева.

Интересующая нас алгебра K[G/H]U
− вкладывается в алгебру инвариантов

K[Ω]U
−×H , где Ω = U− · T · U ⊂ G — большая клетка, U− и H действу-

ют на ней умножениями слева и справа соответственно. Для доказательства
теорем находятся все функции из алгебры инвариантов на большой клетке,
которые продолжаются до регулярных функций на всей алгебре K[G]U

−×H .
Для нахождения таких функций используется алгоритм Кучеренко [7], при-
менявшийся им в похожей ситуации. С его помощью явно строится конечная
система порождающих алгебры инвариантов K[G/H]U

−
, что завершает до-

казательство.
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Порядки элементов расширения конечной простой
исключительной группы графовым автоморфизмом
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Доклад основан на совместной работе с А.А. Бутурлакиным.
Пусть G — конечная группа, возникающая следующим образом:

G = CG(σ), где G — односвязная простая алгебраическая группа над ал-
гебраическим замыканием поля простого порядка p и σ — сюръективный
эндоморфизм группы G. Тогда, за конечным числом исключений, G/Z(G)
— простая группа, и все конечные простые группы лиева типа могут быть
получены таким образом. Будем для краткости писать Hσ вместо CH(σ) для
любой σ-инвариантной подгруппы или надгруппы H группы G.

Пусть α — полупростой автоморфизм группы G (другими словами, αk —
сопряжение полупростым элементом группы G для некоторого k, взаимно
простого с p). По теореме Стейнберга [1, теорема 8.1] централизатор CG(α) —
связная редуктивная группа. В частности, если g — полупростой элемент
группы G, то CG(g) = (CG(g))σ — множество неподвижных точек эндомор-
физма σ в редуктивной подгруппе группы G. Описание централизаторов по-
лупростых элементов группы G, основанное на этом соображении, изложено
в работе Р. Картера [3] и, в свою очередь, на основе этого описания завершен
подсчет порядков элементов конечных простых групп лиева типа (см. [2]).

Пусть теперь τ — графовый автоморфизм группы G (т.е. τ — автомор-
физм порядка 2 или 3, связанный с нетривиальной симметрией диаграммы
Дынкина системы корней группы G). Предположим, что τ перестановочен
с σ. Тогда τ индуцирует автоморфизм группы G, который принято обозна-
чать той же буквой, G⋊⟨τ⟩ = (G⋊⟨τ⟩)σ и, за конечным числом исключений,
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(G ⋊ ⟨τ⟩)/Z(G) — расширение простой группы G/Z(G) графовым автомор-
физмом (и так можно получить все расширения простых групп лиева типа
графовыми автоморфизмами).

Наша цель — посчитать порядки элементов группы (G ⋊ ⟨τ⟩)/Z(G), и в
случае, когда τ полупрост, мы используем ту же идею с централизаторами по-
лупростых элементов: если g — полупростой элемент из смежного класса τG,
то CG⋊⟨τ⟩(g) = (CG⋊⟨τ⟩(g))σ и (CG⋊⟨τ⟩(g))

◦ = CG(g) — редуктивная подгруппа
группы G; строение этих редуктивных групп описано в работе Ф. Диня и
Ж. Мишеля [4], и затем мы переходим к конечным группам в духе Картера.
Хотя эту идею можно использовать для любых простых групп лиева типа,
основной интерес она представляет для исключительных групп, поскольку в
случае классических групп группа (G⋊⟨τ⟩)/Z(G) имеет естественное матрич-
ное представление и порядки элементов проще считать в этом представлении.
В докладе будет представлено воплощение этой идеи для исключительных
групп лиева типа, имеющих графовые автоморфизмы, т.е. для групп E6(q),
2E6(q) и 3D4(q).
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Пусть K — алгебраически замкнутое поле нулевой характеристики. Рас-
смотрим аффинное алгебраическое многообразие X с алгеброй регулярных
функций B := K[X]. Обозначим через LND(B) множество всех локально
нильпотентных дифференцирований (ЛНД) алгебрыB, то есть таких диффе-
ренцирований δ : B → B, что для любого f ∈ B найдётся такое натуральное
число n, что δn(f) = 0.

30



Существует естественное действие группы автоморфизмов Aut(B) алгеб-
ры B на LND(B) сопряжениями. Обозначим стабилизатор ЛНД δ при этом
действии через Autδ(B). Ранее изучались стабилизаторы ЛНД на некоторых
классах многообразий, например, в [4] были описаны стабилизаторы простых
дифференцирований на алгебре многочленов от двух переменных, в [1] изу-
чались стабилизаторы ЛНД на поверхностях Данилевского, а в [3] были най-
дены стабилизаторы ЛНД на некоторых почти жестких многообразиях.

Рассмотрим естественный гомоморфизм ограничения

Θ: Autδ(B) → Aut(Ker(δ)).

В работе [2] доказано, что Ker(Θ) совпадает с группой U(δ) — подгруппой в
Aut(B), состоящей из экспонент всех ЛНД, эквивалентных δ. В докладе будет
представлен способ описания Autδ(B), основанный на вычислении Im(Θ).

Если для δ нет коммутирующих с ним, но не эквивалентных ему ЛНД, то
назовем δ максимальным. Используя технику, аналогичную технике работы
[5], можно показать, что все максимальные торы в группе Autδ(B) сопряже-
ны с помощью экспоненты некоторого ЛНД. Таким образом удается описать
Autδ(B) однородных максимальных ЛНД на торических многообразиях и
некоторых триномиальных гиперповерхностях. Также в работе в комбина-
торном виде дан критерий максимальности однородного ЛНД на нормаль-
ном торическом многообразии и описаны однородные максимальные ЛНД на
некоторых триномиальных гиперповерхностях.

Список литературы
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Простые алгебры Новикова
В.Н. Желябин1, А.П. Пожидаев1, А.С. Захаров1,2

1Институт математики СО РАН им. Соболева,
Новосибирск, Россия

2Новосибирский государственный технический университет,
Новосибирск, Россия

app@math.nsc.ru (А.П. Пожидаев), antzakh@gmail.com (А.С. Захаров),
vicnic@math.nsc.ru (В.Н. Желябин)

Алгебры Новикова появились в работе И.М. Гельфанда и И.Я. Дорфман
и в работе А.А. Балинского и С.П. Новикова. Изучением простых алгебр
Новикова занимались В.Т. Филиппов, Е.И. Зельманов. Большой прорыв был
сделан в работах Дж.М. Осборна и С. Су. В частности, они классифицировали
конечномерные алгебры Новикова в характеристике p > 2. Как оказалось,
эти алгебры получаются с помощью конструкции Гельфанда–Дорфман над
алгебрами усеченных полиномов.

Конструкция Гельфанда–Дорфман состоит в следующем. Пусть A — ассо-
циативная, коммутативная алгебра с дифференцированием d и выделенным
элементом λ. Тогда операция

a ◦ b = ad(b) + λab

задает структуру алгебры Новикова.
В работе [1] был предложен новый подход к изучению алгебр Новикова.

А именно, была установлена связь между алгебрами Новикова и алгеброй
правых умножений.

Пусть Ra — оператор правого умножения в алгебре Новикова N , то есть
Ra(x) = x ◦ a, и R — подалгебра EndN , порожденная элементами вида Ra.
Аналогично определяются операторы левых умножений La и алгебра L, а
также алгебра M , порожденная операторами из R и L. Отображение dx,
определенное правилом dx(u) = [Lx, u] — дифференцирование алгебры R,
где Lx — оператор левого умножения и [· , ·] — коммутатор в R. Множество
таких дифференцирований обозначим DN .

Теорема 1. Пусть N — неассоциативная конечномерная простая алгебра
Новикова над алгебраически замкнутым полем положительной характери-
стики. Тогда радикал J алгебры R не равен нулю, R содержит единицу M ,
R является DN простой и R/J ∼= F .

Теорема 2. Пусть N — неассоциативная конечномерная простая алгеб-
ра Новикова над алгебраически замкнутым полем положительной харак-
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теристики. Тогда существуют такие элементы x, y ∈ N , что отображение
φ : N → R, определенное правилом φ(z) = dz(Ry), будет изоморфизмом ал-
гебры Новикова N и алгебры Новикова, полученной из алгебры R с помо-
щью конструкции Гельфанда–Дорфман для дифференцирования dx и эле-
мента Rx.

В частности, был закрыт вопрос в характеристике 2. В работе [2] был
доказан аналогичный результат и для произвольных полей.

Развивая идеи этих работ, в [3] удалось показать, что всякая алгебра Но-
викова допускает на своем носителе структуру алгебры Новикова–Пуассона.

Теорема 3. Пусть ⟨A, ◦⟩ — неассоциативная простая алгебра Новикова.
Тогда умножение a·y b = (a, b, y) для некоторого y ∈ A ассоциативно, ⟨A, ·y, ◦⟩
— алгебра Новикова–Пуассона. Если A ·y A = A, то ⟨A, ·y⟩ — унитальна,
дифференциально проста относительно d = −D1,1, где Da,b(x) = ax ◦ b −
a ◦ xb и ⟨A, ◦⟩ получается конструкцией Гельфанда–Дорфман с помощью d и
элемента 1 ◦ 1.

Работа выполнена при поддержке гранта РНФ (проект 25–41–00005).
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О B-корневых подгруппах на сферических многообразиях,
сдвигающих замыкания G-орбит

В.С. Жгун
МФТИ, НИИСИ РАН, НИУ ВШЭ, Москва, Россия

zhgoon@mail.ru

Пусть G — связная редуктивная группа над алгебраически замкнутым
полем нулевой характеристики. И пусть X — сферическое G-многообразие,
то есть многообразие, для которого борелевская подгруппа B группыG имеет
открытую орбиту. В докладе мы обсудим, в каких случаяхB-нормализованное
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Ga-действие (B-корневая подгруппа) может сдвигать замыкания G-орбит, а
также дадим условия того, что данная корневая подгруппа сохраняет замы-
кание G-орбиты. А именно, мы обсудим следующие результаты.

Теорема 1. Пусть X — аффинное сферическое G-многообразие и пусть
∂X ⊂ X замкнутое G-подмногообразие. Пусть Y — G-орбита, содержа-
щаяся в множестве регулярных точек Xreg и не лежащая в ∂X. Тогда для
любой минимальной G-орбиты Y ′, содержащей орбиту Y в своем замы-
кании и не совпадающей с ней, существует B-корневая подгруппа на X,
сохраняющая границу ∂X и соединяющая Y с Y ′.

Теорема 2. Пусть X — квазиаффинное сферическое G-многообразие и
пусть R — B-корневая подгруппа, действующая на X. Пусть Y ⊂ Xreg

такая G-орбита, что все B-инвариантные простые дивизоры на X, не со-
держащие Y , инвариантны относительно R. Пусть R соединяет Y с неко-
торой G-орбитой Y ′, такой что Y ⊂ Y ′. Тогда RY = Y ∪Y ′ и Y ′ является
минимальной по включению среди орбит не равных Y , удовлетворяющих
Y ⊂ Y ′.

Стоит отметить, что обычно в определении сферических многообразий
подразумевается нормальность, однако в упомянутых теоремах нормальность
не требуется. Также мы обсудим необходимое и достаточное комбинаторное
условие, которое нужно наложить на вес B-корневой подгруппы, чтобы она
сохраняла замыкание данной G-орбиты.

Доклад основан на совместных работах с Р. С. Авдеевым [2], [3], [4].

Список литературы
[1] I. Arzhantsev, R. Avdeev. Root subgroups on affine spherical varieties. Selecta
Math. (N.S.) 28 (2022), no. 3, article 60.
[2] R.S. Avdeev, V.S. Zhgoon. On the existence of B-root subgroups on affine
spherical varieties. Dokl. Math. 105 (2022), no. 2, 51–55.
[3] R. Avdeev, V. Zhgoon. Root subgroups on horospherical varieties, arXiv:
math.AG/2312.03377 (2023).
[4] R. Avdeev, V. Zhgoon. Connecting G-orbits in quasiaffine spherical varieties
via B-root subgroups, arXiv: math.AG/2512.09906.

34



О суперпозициях частных дифференцирований Фокса
В.С. Задворнов

Новосибирский государственный университет,
Новосибирск, Россия
v.zadvornov@g.nsu.ru

В 40-х годах двадцатого века Ральф Фокс [1] ввёл понятие свободного диф-
ференцирования. Для ознакомления с теорией дифференцирований Фокса ре-
комендуем, например, монографии [2] и [3].

Пусть Z[F ] — групповое кольцо свободной группы F над кольцом це-
лых чисел Z. Дифференцированием Фокса называется любое отображение
D : Z[F ] → Z[F ], удовлетворяющее для любых ν, η ∈ Z[F ] соотношениям

• D(ν + η) = D(ν) +D(η),

• D(νη) = D(ν) · ρ(η) + ν ·D(η),

где ρ : Z[F ] → Z — гомоморфизм группового кольца, называемый тривиали-
зацией, который каждому элементу группового кольца сопоставляет сумму
его коэффициентов. Если элементы ν и η из свободной группы, то второе
соотношение принимает вид D(νη) = D(ν) + ν ·D(η).

Если Fr — свободная группа ранга r и X = {x1, . . . , xr} — её базис, то для
каждого i = 1, r существует единственное дифференцирование Dxi

(называ-
емое частным дифференцированием по переменной xi), удовлетворяющее
условиям

Dxi
(xj) =

{
1, если i = j,

0, если i ̸= j.

Также для каждого i = 1, r существует единственное частное дифференци-
рование по переменной x−1

i , обозначаемое Dx−1
i
, для которого Dx−1

i
(x−1

i ) = 1,
и значение на любом элементе xj, j ̸= i, равно нулю.

Для удобства введём обозначение. Если xi ∈ X, то σi(v), v ∈ Fr, озна-
чает сумму показателей степеней, в которых переменная xi входит в сло-
во v. Также через F ′

r(i) обозначим множество всех слов v ∈ Fr, для кото-
рых σi(v) = 0 (i = 1, r). Заметим, что если F ′

r — коммутант группы Fr, то

F ′
r =

r⋂
i=1

F ′
r(i), т.е. коммутант F ′

r состоит из всех слов v, для которых σi(v) = 0

для любого i = 1, r. Через Dε(1,m)
xi , ε(1,m) = (ε1, ε2, . . . , εm) ∈ {±1}m, обозна-

чаем суперпозицию
Dxi

ε1 ◦Dxi
ε2 ◦ . . . ◦Dxi

εm .
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Постановка задачи. Пусть задана некоторая суперпозиция D = D
ε(1,m)
xi

частных дифференцирований по xi и по x−1
i . Требуется описать все слова

v ∈ Fr, аннулируемые данной суперпозицией, т.е. для которых D(v) = 0.
Cледующий результат является ключевым.
Предложение. Пусть v ∈ Fr, xi ∈ X, причём σi(v) = 0. Тогда любая

суперпозиция D = D
ε(1,m)
xi частных дифференцирований по xi или по x−1

i ,
применённая к слову v, даёт элемент с суммой коэффициентов, равной нулю,
т.е. ρ(D(v)) = 0.

Нетрудно убедиться, что суперпозиция частных дифференцирований по
xi и по x−1

i не является дифференцированием. Однако, имеет место
Теорема 1. Для любых xi ∈ X ограничение произвольной суперпозиции

D = D
ε(1,m)
xi на подгруппу F ′

r(i) (а также на коммутант F ′
r) определяет диф-

ференцирование Фокса группового кольца Z[F ′
r(i)] (соответственно Z[F ′

r]).
Результат, сформулированный в следующей теореме, отвечает на вопрос в

постановке задачи.
Теорема 2. Пусть Fr − свободная группа, xi − её порождающий и D =

D
ε(1,m)
xi − суперпозиция частных дифференцирований по xi или по x−1

i . По-
ложим k равным количеству единиц в кортеже ε(1,m− 1), а l равным коли-
честву минус единиц. Тогда произвольное слово v ∈ Fr, записанное в виде

v = g0x
α1g1 . . . x

αngn, αi ̸= 0, gi не содержат xi,

аннулируется суперпозицией D тогда и только тогда, когда выполнена систе-
ма неравенств 

−l ≤ αn ≤ k,

−l ≤ αn + αn−1 ≤ k,
...

−l ≤ αn + αn−1 + . . .+ α2 ≤ k,

−l ≤ αn + αn−1 + . . .+ α2 + α1 ≤ k.

Список литературы
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Гипотеза Айзекса для конечных унипотентных групп
М.В. Игнатьев

НИУ ВШЭ, Москва, Россия
mihail.ignatev@gmail.com

Пусть U — унипотентная аффинная алгебраическая группа над конеч-
ным полем Fq достаточно большой характеристики, n — её алгебра Ли, n∗

— двойственное к ней пространство. Согласно методу орбит Кириллова [4],
орбиты коприсоединённого действия группы U на пространстве n∗ находят-
ся во взаимно однозначном соответствии с неприводимыми конечномерными
комплексными представлениями группы U .

В 1960 г. Г. Хигман [1] сформулировал гипотезу о количестве коприсоеди-
нённых орбит, которая в 2007 г. была усилена И.М. Айзексом [3]. Усилен-
ная версия гипотезы звучит так: количество орбит данной размерности яв-
ляется многочленом от q − 1 с целыми неотрицательными коэффициентами.
К настоящему моменту гипотеза проверена в ряде важных случаев, см. обзор
в [2, Section 10].

Недавно мы с М.С. Венчаковым получили классификацию орбит макси-
мальной и предмаксимальной размерности для максимальной унипотентной
подгруппы в конечной классической группе типа Cn, а также классифика-
цию орбит максимальной размерности для типов Bn и Dn. Это позволяет
доказать гипотезу Айзекса для орбит указанных размерностей. Я расскажу
об этих результатах, а также о новых результатах о выполнении гипотезы
Айзекса для других классов унипотентных групп.
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Подпространства Бете и чудесная компактификация
А.И. Ильин

МФТИ, Москва, Россия
alex_omsk@211.ru

Мы определяем коммутативные подпространства гамильтонианов Бете в
тригонометрической алгебре Ли голономий, аналогично гамильтонианам Го-
дена в рациональной алгебре голономий, определенным Aguirre–Felder–Veselov
[1]. Затем мы обсудим основной результат — всевозможные пределы подпро-
странств Бете параметризуются минимальной чудесной компактификацией
дополнения тора до набора корневых подторов. Доклад будет следовать пре-
принту [2].

Список литературы
[1] L. Aguirre, G. Felder, A. Veselov. Gaudin subalgebras and wonderful models.
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Гибкость орисферических многообразий
В.В. Киктева

НИУ ВШЭ, МГУ им. М.В. Ломоносова, Москва, Россия
VVKikteva@yandex.ru

Доклад основан на совместной с С.А. Гайфуллиным работе [7].
Далее K — алгебраически замкнутое поле нулевой характеристики и Ga =

(K,+) — его аддитивная группа. Алгебраическое многообразие X называ-
ется гибким, если касательное пространство в каждой его регулярной точке
порождено касательными векторами к орбитам регулярных действий груп-
пы Ga. Для неприводимого аффинного многообразияX размерности не мень-
ше 2 гибкость эквивалентна транзитивности, а также бесконечной транзитив-
ности действия SAut(X) на множестве гладких точек, см. [4, Theorem 0.1].
Здесь под SAut(X) подразумевается группа специальных автоморфизмов
многообразия X, то есть подгруппа в группе автоморфизмов, порождённая
всеми алгебраическими подгруппами, изоморфными аддитивной группе по-
ля Ga.

Многие известные классы многообразий являются гибкими. К примеру, ра-
бота [5] содержит три класса гибких многообразий. Первый класс образуют
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нормальные аффинные конусы над многообразиями флагов, второй — невы-
рожденные нормальные торические многообразия, третий — итерированные
надстройки над гибкими аффинными многообразиями. Также некоторые ре-
зультаты о гибкости получены для векторных расслоений, аффинных конусов
над проективными многообразиями, универсальных торсоров, поверхностей
Гизатуллина, пространств Калоджеро–Мозера. Подробнее об этом см. в об-
зоре [6].

Неприводимое многообразие называется орисферическим, если оно допус-
кает такое действие связной линейной алгебраической группы G, что ста-
билизатор точки общего положения содержит максимальную унипотентную
подгруппу G. Мы говорим, что орисферическое многообразие имеет слож-
ность 0, если действие группы G на X имеет открытую орбиту O. Отметим,
что в данном определении мы не требуем нормальности X. Более подробную
информацию об орисферических многообразиях можно найти в работе [2].
Далее мы подразумеваем, что орисферические многообразия имеют слож-
ность 0.

Невырожденные нормальные аффинные орисферические многообразия все-
гда гибкие, см. [8]. Здесь под невырожденностью подразумевается отсутствие
обратимых регулярных функций кроме констант. Также в работе [3] дока-
зана гибкость не обязательно нормальных орисферических многообразий с
действием полупростой группы. Если мы отказываемся от требования нор-
мальности, появляются примеры не гибких многообразий, критерий гибкости
произвольных торических многообразий был найден в [1]. В настоящем до-
кладе мы обсудим критерий гибкости не обязательно нормальных аффинных
орисферических многообразий с действием произвольной группы, обобщаю-
щий данные результаты.

Доклад подготовлен в ходе проведения исследования в рамках проекта
«Международное академическое сотрудничество» НИУ ВШЭ.
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Левые идеалы и центры алгебр Новикова
Н.В. Котенков

Новосибирский государственный университет,
Новосибирск, Россия
n.kotenkov@g.nsu.ru

Алгебра A называется алгеброй Новикова, если в ней для любых x, y, z ∈ A

выполнены соотношения

(x, y, z) = (y, x, z), (xy)z = (xz)y,

где (x, y, z) = (xy)z − x(yz). Алгебры Новикова впервые появились в фор-
мальном вариационном исчислении [1].

Алгебра над полем называется полупервичной, если для любого её нену-
левого идеала I верно I2 ̸= 0. Алгебра над полем называется первичной,
если для любых её ненулевых идеалов I, J верно, что IJ ̸= 0.

В любой алгебре A можно определить ассоциативный центр N(A) и центр
Z(A) следующим образом:

N(A) = {n ∈ A | (n,A,A) = (A, n,A) = (A,A, n) = 0},
Z(A) = {z ∈ N(A) | za = az ∀a ∈ A}.

Известно, что в ассоциативной полупервичной алгебре ассоциативный центр
и центр любого идеала наследуются со всей алгебры. Для алгебр Новикова
удалось доказать аналогичный результат.

Теорема 1. Пусть A — полупервичная алгебра Новикова и I — идеал
алгебры A. Тогда

N(I) = N(A) ∩ I, Z(I) = Z(A) ∩ I.
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Также известно, что в ассоциативной первичной алгебре любой идеал яв-
ляется первичной алгеброй. Для алгебр Новикова был доказан следующий
результат.

Теорема 2. Пусть A — первичная неассоциативная алгебра Новикова, J —
её левый идеал. Тогда выполняется одно из следующих утверждений:

• A · J = 0, то есть J ⊆ Annr(A);

• J является первичной неассоциативной алгеброй Новикова.
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Базисы ассоциированных модулей Галуа
в общих дико разветвленных расширениях

и в элементарных абелевых расширениях степени p2

К.С. Ладный
НИУ ВШЭ, Москва, Россия

kiriladny@gmail.com

Доклад основан на работе автора [1].
Данная работа посвящена исследованию ассоциированных модулей и по-

рядков Галуа для вполне разветвленных расширений полей дискретного нор-
мирования. Основное внимание уделяется явным вычислениям и построению
базисов для этих модулей, в частности в случае элементарных абелевых рас-
ширений степени p2. Авторы вводят и развивают теорию градуированно-
независимых множеств и диагональных базисов, которые позволяют явно
описывать модули Ai и соответствующие ассоциированные порядки. Цен-
тральный результат работы

(Часть) теоремы 3.3.2, [1]. ПустьKi/k, i = 1, 2 — вполне разветвленные
расширения Галуа локальных полей степени p с различными ненулевыми по
модулю p скачками ветвления (без ограничения общности) h1 < h2, σi —
соответствующие подъемы образующих групп Галуа, K = K1K2 — композит
этих расширений. Для 0 ≤ i, j ≤ p−1 положим fij = (σ1−1)i(σ2−1)j ∈ k[G].
Тогда B = {fij : 0 ≤ i, j ≤ p− 1} — градуированный базис K/k.
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дает явное описание модулей Ai для расширений с группой Галуа (Z/pZ)2
и различными по модулю p2 скачками ветвления.

В работе исследованы свойства введенных конструкций, в том числе их
поведение относительно подъема на ручные расширения и связь с классиче-
скими ассоциированными порядками. Полученные результаты обобщаются
на случай относительных ассоциированных модулей A0

i = Ai ∩ k0[G], где
k0 ⊂ k. В работе используется глубоко исследованный ранее Михаилом Вла-
димировичем Бондарко изоморфизм между K ⊗k K и K[G], и представлен
детальный анализ фильтраций на тензорных квадратах и их связи со струк-
турой модулей Галуа. Результаты представляют интерес для специалистов по
теории чисел и арифметической геометрии.

Список литературы
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Отображения комплексных и вещественных матриц,
сохраняющие пучковое условие для вырожденности

А.М. Максаев, В.В. Промыслов
ФКН НИУ ВШЭ, Москва, Россия
amaksaev@hse.ru, vpromyslov@hse.ru

В 1949 году Дьёдонне [1] доказал, что если T : Mn(F) → Mn(F) — ли-
нейная биекция, сохраняющая множество вырожденных матриц, то T имеет
стандартный вид на Mn(F), т. е. T (A) = PAQ или T (A) = PATQ для всех
A ∈ Mn(F), где P,Q — невырожденные матрицы. Позднее были получены
многочисленные обобщения этой теоремы, см. например [2], [3], [4], [5].

Впоследствии, в 2020 году, Костара [6] обобщил результат Дьёдонне для
таких отображений φ1 и φ2 на алгебре матриц размера n × n над F = C,
что по крайней мере одно из отображений φ1, φ2 является непрерывным или
сюръективным и выполнено условие

det(λA+B) = 0 ⇐⇒ det(λφ1(A) + φ2(B)) = 0 ∀A,B ∈Mn, ∀λ ∈ F. (1)

Его техника существенно опиралась на топологические свойства поля ком-
плексных чисел. Мы представим аналогичный результат для произвольного
алгебраически замкнутого поля F и любых отображений φ1, φ2 (не обяза-
тельно непрерывных или сюръективных), удовлетворяющих условию (1). В
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докладе мы обсудим доказательство результата над любым алгебраически за-
мкнутым полем, основанное на статье [7], а также новые идеи, позволившие
обобщить его на поле R вещественных чисел.

Наша техника существенно отличается от техники Костары и состоит в
рассмотрении матриц с полным (или простым) спектром, т. е. n× n матриц,
имеющих ровно n различных собственных значений (комплексных или ве-
щественных, в зависимости от постановки задачи). А именно, оказывается,
что под действием группы GLn левыми сдвигами любое конечное множе-
ство невырожденных матриц может быть преобразовано в множество, все
матрицы которого имеют полный спектр. В докладе мы обсудим этот факт,
представляющий независимый интерес, и его связь с исходной задачей.
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Множества раздела орбит полярных представлений
компактных групп Ли

М.В. Мещеряков
НИУ ВШЭ, Нижний Новгород, Россия

1953mmv@mail.ru

Множества раздела единичного элемента в компактной простой группе
Ли, снабженной биинвариантной римановой метрикой, исследовались уже в
классических работах Э. Картана по геометрии групп Ли и симметрических
пространств [1]. Понятие множества раздела (cut locus) точки было введено
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А. Пуанкаре и затем было обобщено на случай подмногообразий римановых
многообразий.

Э. Картан свел задачу описания множества раздела к задаче о метриче-
ской геометрии альковов диаграмм Штифеля симметрических пространств.
В случае решеток полупростых групп Ли задача свелась к анализу метри-
ческих свойств областей Вороного их характеристических решеток (см. [2]).
Для односвязных компактных групп Ли известно явное описание соответ-
ствующих областей Вороного (см. [3]) в терминах систем корней и геометрии
орбит групп Вейля. Для неодносвязных групп Ли и римановых симметриче-
ских пространств задача о строении множества раздела изучалась в послед-
ние десятилетия в ряде работ. Полностью она решена только для эрмитовых
симметрических пространств и некоторых других частных классов римано-
вых симметрических пространств, называемых R-пространствами.

Определенные задачи топологического анализа данных привели к поста-
новке вопроса о строении множеств раздела подмногообразий римановых
пространств постоянной кривизны. Особый интерес в связи с геометрией ор-
бит линейных действий компактных групп Ли G на вещественном векторном
пространстве представляет выяснение строения их множеств раздела по от-
ношению к G-инвариантным евклидовым метрикам. В модельном примере
присоединенного представления полупростой компактной группы оказыва-
ется, например, что множество раздела орбит общего положения совпадает с
множеством нерегулярных элементов алгебры Ли группы.

Наши основные результаты, обобщая это наблюдение, описывают строе-
ние множеств раздела орбит представлений изотропии римановых симметри-
ческих пространств. Ответ дается в терминах их систем корней и геометрии
орбит групп Вейля. Найдена стратификация множества раздела веществен-
ными полуалгебраическими множествами. Кроме того, получено описание
разложения Вороного пространства представления на области Вороного то-
чек, принадлежащих орбите.

Сформулируем это более точным образом. Пусть (G,K) — риманова сим-
метрическая пара. Обозначим через W группу Вейля компактного симметри-
ческого пространства G/K и через A его подпространство Картана. Пусть,
далее, G = k +m — разложение Картана алгебры Ли G группы G. Ограни-
чение присоединенного представления группы G на подгруппу изотропии K
при её действии на пространстве m есть представление изотропии простран-
ства G/K.

Наконец, если N — подмногообразие евклидова пространства Rn, то об-
ласть (ячейка) Вороного V orN(y) состоит из всех тех точек u пространства
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Rn, что точка y ∈ N есть ближайшая к u точка по сравнению с другими
точками x ∈ N .

Теорема 1. Ячейка Вороного V orOλ
(λ) орбиты Oλ представления изо-

тропии полупростого риманова симметрического пространства есть орбита
нормального конуса вершины λ многогранника convWλ в одном из подпро-
странств Картана, содержащих λ, при действии на него стабилизатора Kλ в
группе K точки λ орбиты.

Теорема 2. a) Множество раздела Cut(Oλ) орбиты Oλ в пространстве
представления изотропии m есть объединение орбит тех точек подпростран-
ства Картана A при действии группы K на m, которые принадлежат границе
нормального конуса в вершине λ выпуклой оболочки convWλ орбиты Wλ.

b) Разбиение границы нормального конуса вершины λ на грани меньшей
размерности порождает соответствующую стратификацию полуалгебраиче-
ского множества Cut(Oλ) на полуалгебраические страты, которые суть орби-
ты указанных граней нормального конуса при действии на них группы K.

Сформулированные выше результаты непосредственно связаны с рабо-
той [4], где было явно вычислено расстояние между орбитами и их множе-
ствами раздела для рассмотренных здесь представлений изотропии. Отме-
тим, что теоремы 1 и 2 являются в некотором смысле аналогами известной в
матричном анализе теоремы Эккарта–Юнга [5].
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Инвариантные комплексные структуры
и когомологии нильмногообразий
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Мы рассматриваем левоинвариантные комплексные структуры на веще-
ственных нильпотентных группах Ли или, что то же самое, интегрируемые
комплексные структуры на вещественных нильпотентных алгебрах Ли. Ле-
воинвариантная комплексная структура на односвязной нильпотентной груп-
пе Ли G определит также левоинвариантную комплексную структуру и на
нильмногообразии G/Γ, если группа Ли G содержит кокомпактную решетку
Γ. В качестве основного инструмента для классификации вещественных ниль-
потентных алгебр Ли (нильмногообразий), допускающих интегрируемую (ле-
воинвариантную) комплексную структуру, предлагается специализированная
минимальная модель MJ

g нильпотентной алгебры Ли g (нильмногообразия
G/Γ) с комплексной структурой J [2], [3].

Известно, что комплекс де Рама нильмногообразия Λ∗(G/Γ) можно отож-
дествить с подкомплексом Λ∗

Γ(G) ⊂ Λ∗(G) левоинвариантных дифференци-
альных форм на группе Ли G по отношению к действию решетки Γ. В свою
очередь в Λ∗

Γ(G) можно выделить подкомплекс Λ∗
G(G) форм, инвариантных

относительно левого действия всей группы Ли G. Комплекс Λ∗
G(G) естествен-

но изоморфен коцепному комплексу Λ∗(g) алгебры Ли g. Классическая тео-
рема Номидзу утверждает, что включение ψ : Λ∗(g) → Λ∗(G/Γ) индуцирует
кольцевой изоморфизм в когомологиях ψ∗ : H∗(g) → H∗(G/Γ,R). В рабо-
те [1] был сформулирован вопрос (гипотеза) о существовании канонического
изоморфизма в духе теоремы Номидзу

Hp,q(gC, J) ∼= Hp,q(G/Γ, ∂̄), (1)

где Hp,q(gC, J) — когомологии Дольбо комплексификации gC вещественной
алгебры Ли g с интегрируемой комплексной структурой J , а Hp,q(G/Γ, ∂̄) —
когомологии Дольбо нильмногообразия G/Γ с левоинвариантной комплекс-
ной структурой J . Мы обсудим современное состояние дел в этом вопросе.

Доклад основан на работах автора [2], [3].

Список литературы
[1] L.A. Cordero, M. Fernandez, A. Gray, L. Ugarte. Compact nilmanifolds with
nilpotent complex structures: Dolbeault cohomology. Trans. Amer. Math. Soc.
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[2] Д.В. Миллионщиков. Минимальная модель нильмногообразия и простран-
ство модулей комплексных структур. Труды МИАН 325 (2024), 201–231.
[3] Д.В. Миллионщиков. Узкие алгебры Ли и интегрируемые комплексные
структуры. Труды МИАН 329 (2025), 165–189.

Ограничение представлений GL(n) на GL(n− 1)
и дифференциально-разностные операторы

Ю.А. Неретин
ВШМ МФТИ, Москва, Россия

hepetuh@yandex.ru

Доклад основан на работе автора [1].
Рассматривается конечномерное неприводимое (голоморфное) представ-

ление группы GL(n,C). Оно, как известно, реализуется в некотором про-
странстве многочленов на пространстве Tn строго верхнетреугольных (уни-
потентных) матриц (это карта на флаговом многообразии). Мы раскладыва-
ем на неприводимые ограничение этого представления на меньшую группу
GL(n − 1), реализуем ограничение в пространстве функций на Tn−1 × Zn−1

и пишем явно формулы для действия полной алгебры Ли gl(n) дифференци-
ально-разностными операторами (порядок дифференцирований по комплекс-
ным переменным — n− 2, разностные операторы действуют по решетке, но-
ситель функций по решетке — конечная область).

Это частный случай такого общего (по-видимому, верного) тезиса. Пусть
ограничение (вообще говоря бесконечномерного) унитарного представления
классической группы Ли G на подгруппу H допускает явное разложение на
неприводимые представления (с идентификацией скалярных произведений).
Тогда операторы алгебры Ли большей группы в этом разложении могут быть
написаны в явном виде как дифференциально-разностные операторы.

Список литературы
[1] Yu.A. Neretin. Restriction of representations of GL(n + 1,C) to GL(n,C)
and action of the Lie overalgebra. Algebras and Representation Theory 21(2018),
1087–1117.
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Аффинные моноиды с активной группой обратимых элементов
Е.Д. Нистюк (Преснова)

НИУ ВШЭ
ekaterina.presnova@gmail.com

Пусть X — нормальное неприводимое аффинное алгебраическое многооб-
разие, и пусть дан морфизм

X ×X → X, (x, y) 7→ x ∗ y.

Тогда X называется алгебраическим моноидом, если для всех x, y, z ∈ X
выполнено x∗ (y ∗z) = (x∗y)∗z и найдется такая точка 1 ∈ X, что x∗1 = 1∗
x = x. Группа обратимых элементов G алгебраического моноида X является
алгебраической группой и открыта по Зарисскому в X.

Нас интересует случай, когда G = U ⋋ T , где T — тор, U — унипотентная
группа, полупрямое произведение задается гомоморфизмом ψ : T → AutU .
Полупрямое произведение G = U ⋋ T называется активным, если

dimT + dim Imψ = dimG.

Понятие активного полупрямого произведения было введено в работе [1]; по-
казано, что любой аффинный моноид с активной группой обратимых элемен-
тов является аффинным торическим многообразием.

В совместной работе [2] с Ю. Зайцевой мы описали все активные моноиды.
Более точно, любой активный моноид строится по конусу σ соответствующе-
го торического многообразия, k-мерной регулярной грани τ ⊂ σ и некоторому
набору корней Демазюра конуса σ. Доклад подготовлен в ходе проведения
исследования в рамках проекта «Международное академическое сотрудниче-
ство» НИУ ВШЭ.

Список литературы
[1] Yu. Zaitseva. Affine monoids of corank one. Results in Mathematics 79 (2024),
no. 7, article 249.
[2] E. Presnova, Yu. Zaitseva. Affine monoids with active group of invertible
elements, in preparation.
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Инварианты максимальных унипотентных подгрупп
А.Н. Панов

Самарский национальный исследовательский университет
имени С.П. Королева, Самара, Россия

apanov@list.ru

Пусть Q = (V,A) — колчан, где V — множество вершин и A — множество
ребер. Каждое ребро α ∈ A имеет начало (source) s(α) и вершину (target)
t(α). Сопоставим каждой вершине v натуральное число nv. Пусть K поле.
Каждому ребру α сопоставим линейное пространство Hα матриц размера
nt(α) × ns(α). Для каждой вершины v ∈ V определена группа GLv = GL(nv)
с элементами в поле K и ее унитреугольная подгруппа Uv = UT(nv), состо-
ящая из всех верхнетреугольных (nv × nv)-матриц с единицами на диагона-
ли. Рассмотрим прямое произведение G = GLQ =

∏
v∈V GLv, его подгруппу

U = UQ =
∏

v∈V Uv и линейное пространство

H = HQ = ⊕α∈AHα.

Группа G действует в пространстве H по формуле

g.h = (gt(α)Xαg
−1
s(α))α∈A, g = (gv) ∈ G, h = (Xα) ∈ H.

Ставится задача построения сечения для представления группы U в про-
странстве H и нахождения системы свободных образующих элементов в поле
U -инвариантов K(H)U .

Зафиксируем линейный порядок на множестве ребер A. В докладе будет
представлен алгоритм построения сечения представления U в H и системы
свободных образующих элементов в поле U -инвариантов K(H)U .

Доклад основан на работе [3]. Ранее поставленные задачи были решены
для случая присоединенного действия на системе матриц (см. [1]) и для слу-
чая равноразмерного представления (см. [2]).

Список литературы
[1] A.N. Panov. Fields of U -invariants of matrix tuples. Electronic Journal of
Linear Algebra 39 (2023), 117–123.
[2] A.N. Panov. Equidimensional quiver representations and their U -invariants.
Journal of Algebraic Combinatorics 61 (2025), article 22.
[3] A.N. Panov. Fields of U -invariants of quiver representations. Linear and Mul-
tilinear Algebra, сдана в печать.
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Мотивы Чжоу некоторых многообразий Мукаи
В.А. Петров, Д.А. Ривин

Санкт-Петербургский государственный университет,
Санкт-Петербург, Россия
victorapetrov@gmail.com

Доклад основан на дипломной работе Д.А. Ривина.
Среди многообразий Фано отдельный интерес представляют многообразия

с небольшими размерностями когомологий. Мы рассматриваем случай трех-
мерных многообразий V5 и V22, которые имеют такие же когомологии, как
проективное пространство, и четырехмерное многообразие рода 10, которое
имеет такие же когомологии, как четырехмерная квадрика. Поскольку эти
многообразия могут иметь деформации, мы фиксируем такое многообразие,
которое имеет наибольшую возможную группу автоморфизмов, а именно,
PGL2 для случая V5 и V22 [2] и GL2 ⋊ Z/2 для случая четырехмерного мно-
гообразия, которое в таком случае еще называется многообразием Мукаи–
Умемуры [3]. Многообразие Мукаи–Умемуры можно реализовать также как
гиперплоское сечение проективного однородного многообразия G2/P2 (тогда
как G2/P1 изоморфно пятимерной квадрике). Из наличия Gm-действия стан-
дартной техникой Бьялыницки–Бируля несложно доказать, что мотив Чжоу
этих многообразий раскладывается в сумму мотивов Лефшеца.

Мы рассматриваем скрученные формы этих многообразий над произволь-
ным полем характеристики 0. Их можно еще описать как некоторые гладкие
компактификации подходящего PGL2-торсора (в случае V5 и V22) или U2-
торсора для случая многообразия Мукаи–Умемуры (где U2 обозначает уни-
тарную группу).

Основные результаты следующие:

Теорема. Мотив Чжоу скрученной формы V5 или V22 раскладывается в
сумму сдвинутых мотивов коники.

Теорема. Мотив Чжоу скрученной формы многообразия Мукаи-Умемуры
изоморфен мотиву Чжоу некоторой 5-мерной квадрики.

Заметим, что Бонне доказал изоморфизм мотивов скрученных форм мно-
гообразий G2/P1 и G2/P2. Наш результат говорит, что мотивный изоморфизм
имеет место и для их гладких гиперплоских сечений.

Список литературы
[1] J.-P. Bonnet. A motivic isomorphism between two projective homogeneous
varieties under the action of a group of type G2. Doc. Math. 8 (2003), 247–277.
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action and their automorphisms. Épijournal de Géometrié Algébrique 2 (2018),
article 3.
[3] Yu. Prokhorov, M. Zaidenberg. Fano–Mukai fourfolds of genus 10 and their
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Свойство счётной отделимости
для ассоциативных и других алгебр

А.В. Петухов
ИППИ РАН, Москва, Россия

alex–2@yandex.ru

Для ассоциативной алгебры A с простым модулем M с тривиальными эн-
доморфизмами и тривиальным аннулятором я проверил свойство счётной от-
делимости, т.е. доказал, что существует список ненулевых элементов a1, a2, . . .
алгебры A такой, что каждый двусторонний идеал алгебры A содержит по
крайней мере один такой ai. Основываясь на этом результате, было прове-
рено свойство счётной отделимости для свободной ассоциативной алгебры с
конечным или счётным множеством образующих над любым полем. Свойство
счётной отделимости изучалось ранее в работах Диксмье и других, но толь-
ко в контексте нётеровых алгебр (а свободная ассоциативная алгебра очень
далека от того, чтобы быть нётеровой).

Аналог основной теоремы имеет место и для дифференциальных (в част-
ности, пуассоновых) алгебр. Я постараюсь наглядно объяснить, в чём за-
ключается счётная отделимость на примерах разных дифференциальных и
пуассоновых алгебр, симметрических алгебр различных бесконечномерных
алгебр Ли.

Устойчивость тождеств алгебр
и преобразования скобочных структур

А.В. Попов
Ульяновск, Россия
klever176@rambler.ru

Пусть A — не обязательно ассоциативная алгебра над полем F нулевой
характеристики. Обозначим через Pn (A) пространство полилинейных тож-
деств степени n алгебры A, т.е. множество некоммутативных неассоциатив-
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ных однородных многочленов f (x1, . . . , xn) степени n, линейных по каждой
переменной, таких, что f (a1, . . . , an) = 0 для любых a1, . . . , an ∈ A.

Обозначим через Lv и Rv операторы умножения на v слева и справа,
и определим оператор M r

v , r ∈ Z2, положив M 0
v = Lv и M1

v = Rv. То-
гда любой моном u ∈ Pn для любого 1 ⩽ i ⩽ n может быть записан как
u = xiM

r1
v1
· · ·M rk

vk
, где k < n.

Определим линейные операторы πi : Pn 7→ Pn, положив

πi · u = xiM
rk+1
vk

· · ·M r1+1
v1

.

Если любое полилинейное тождество алгебры A под действием любого
оператора πi преобразуется снова в тождество алгебры A, то говорят, что
идеал тождеств алгебры A устойчив.

Теорема 1. Если на алгебре A определена невырожденная, ассоциатив-
ная, симметричная билинейная форма, то идеал тождеств алгебры A устой-
чив.

Обозначим через Πn группу, порожденную операторами πi, i = 1..n, дей-
ствующими на пространстве Pn.

Теорема 2. Имеет место изоморфизм Πn
∼= Sn+1. Кроме того, Πn содер-

жит в качестве подгруппы группу Sn, действующую на Pn переименованием
переменных:

σ · f (x1, . . . , xn) = f
(
xσ(1), . . . , xσ(n)

)
.

Последняя теорема показывает, что перестановки σ ∈ Sn можно рассмат-
ривать как элементы группы Πn. Определим операторы π̄k, k = 1..n, положив
π̄k = (1 2 . . . n)n−k (1 2 . . . k) πk.

Утверждение 3. Тождественное преобразование и операторы π̄k, k =
1..n, образуют подгруппу в Πn, изоморфную Zn+1.

Обозначим через Tn множество мономов из Pn таких, что после “стирания”
в них скобок получается слово x1 · · · xn. Как оказывается, действие операто-
ров π̄k может быть ограничено на множество Tn, т.е. операторы π̄k не меняют
порядок переменных в мономах из Tn, а преобразуют только расстановку
скобок.

Как известно, множества Tn являются одним из многочисленных примеров
множеств, мощности которых образуют последовательность чисел Каталана.
Более точно, |Tn| = Cn−1. В частности, существует естественная биекция ϕ
между мономами из Tn и триангуляциями правильных (n+1)-угольников, —
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другим примером комбинаторных структур, подсчитываемых числами Ката-
лана. Оказывается, что операторы ϕ−1π̄kϕ являются операторами поворота
(n+ 1)-угольника.

Список литературы
[1] А.В. Попов. Устойчивые многообразия неассоциативных алгебр. Алгебра
и логика, в печати.

Локальная версия теоремы Мацумуры–Монского,
неравенство Чулкова и морсификации инвариантов1

И.А. Проскурнин
МГУ им. М.В. Ломоносова, механико-математический факультет,
Московский Центр фундаментальной и прикладной математики,

Москва, Россия
dazai131@yahoo.com

Теорема Мацумуры–Монского, доказанная в статье [1], утверждает, что
гладкая комплексная проективная гиперповерхность степени выше второй не
может иметь бесконечной группы автоморфизмов (за исключением особого
случая кривой четвёртой степени). Её локальной версией является утвержде-
ние из работы [2], известное в теории особенностей как гипотеза Казаряна.

Теорема. Пусть f : (Cn, 0) −→ (C, 0) — росток аналитической функции,
имеющий нулевую 2-струю, инвариантный относительно действия компакт-
ной группы Ли G. Если f имеет изолированную критическую точку в начале
координат, то G конечна.

Известно несколько доказательств гипотезы Казаряна. Элементарное до-
казательство, основанное на анализе геометрии многогранника Ньютона ин-
вариантного ростка, было дано В. А. Васильевым в работе [2], доказатель-
ство Мацумуры и Монского из [1] может быть довольно легко адаптировано
под аналитические ростки, но, вероятно, наибольший интерес представляет
доказательство С.П. Чулкова [4]. Чулков выводит гипотезу Казаряна из сле-
дующего неравенства.

Теорема. Пусть f : (Cn, 0) −→ (C, 0) — росток аналитической функции
с изолированной критической точкой в начале координат, имеющий нулевую
2-струю. Если f инвариантен относительно нетривального действия группы
Zp, p — простое, то кратность критической точки f не менее p− 1.

1Работа выполнена за счет гранта Российского научного фонда № 24-11-00124.
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Гипотеза Казаряна легко выводится из этого утверждения, поскольку ком-
пактная группа Ли содержит циклические подгруппы любого порядка, а кри-
тическая точка бесконечной кратности не изолирована. Интерес представ-
ляют обобщения неравенства Чулкова, но доказательство самого Чулкова,
основанное на рассмотрении действия группы Zp на гомологиях множества
уровня f , не может быть обобщено на группы составного порядка.

В докладе планируется обсудить обобщение неравенства Чулкова на слу-
чай произвольных абелевых групп и связь этой задачи с теорией инвариант-
ных морсификаций, построенной Робертсом и Уоллом (см. [5], [6]).
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Однородные локально нильпотентные дифференцирования
триномиальных алгебр

К.А. Рассолов
МГУ им. М.В. Ломоносова, НИУ ВШЭ, Москва, Россия

kirill.rassolov@math.msu.ru

Триномиальные алгебры представляют собой факторалгебры алгебр мно-
гочленов по идеалам, порожденным набором триномов, с некоторыми тех-
ническими условиями. Триномиальные алгебры являются кольцами Кокса
многообразий с действием тора сложности 1 и сами допускают такое дей-
ствие. Мы описали все локально нильпотентные дифференцирования трино-
миальной алгебры, однородные относительно действия тора (максимального
с тем условием, что все переменные однородны). В геометрических терминах
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эти ЛНД соответствуют T-нормализуемым Ga-действиям на спектре трино-
миальной алгебры. Из наших результатов, в частности, следует критерий
полужесткости триномиальной алгебры.

Доклад основан на совместной работе с Т. Красиковым. Работа поддержа-
на грантом РНФ 25–11–00302.

Инварианты алгебр Ли в задаче моделирования лицевой мимики
А.А. Рашевский

Воронежский государственный университет, Воронеж, Россия
rashevskiy_a_a@sc.vsu.ru

Работа посвящена прикладным аспектам аналитического подхода к мо-
делированию лицевой мимики, основанного на использовании инвариантов
алгебр Ли. В рамках подхода мимические изменения задаются действиями
подгрупп некоторых групп Ли преобразований плоскости или пространства.
Основное внимание уделяется двумерной постановке и плоским изображени-
ям модельных лиц. Обсуждения дополняются экспериментами с простыми
трёхмерными моделями лица, где аналогичные преобразования задают со-
гласованные деформации 3D-сетки [3].

Современные методы моделирования мимики условно делятся на несколь-
ко классов. К геометрическим и параметрическим относят модели активной
формы (ASM) и активного внешнего вида (AAM), а также методы дефор-
мации изображений (морфинг, тонкие пластинчатые сплайны и др.), опи-
сывающие лицо через координаты лендмарков и/или текстурные признаки.
Эти подходы обеспечивают компактную параметризацию, но ограничены ли-
нейностью, чувствительны к условиям съёмки и дают параметры без чёткой
связи с отдельными мимическими движениями.

Наиболее активно развиваются нейросетевые подходы, использующие свер-
точные сети и генеративные модели (прежде всего GAN) для синтеза реали-
стичных выражений лица по одной или нескольким исходным фотографиям,
переноса мимики с донора на реципиента и анимации статичных изображе-
ний [4]. При этом для GAN-подходов особенно характерны три принципи-
альных недостатка: низкая интерпретируемость латентного пространства и
внутренних представлений, высокая вычислительная сложность обучения и
применения моделей, а также сильная зависимость от больших размеченных
выборок высокого качества. Эти свойства затрудняют точный контроль над
отдельными мимическими компонентами и усложняют связывание нейросете-
вых моделей с аналитическими или биомеханическими описаниями мимики.

55



Предлагаемый подход трактует изображение лица как плоскую конфи-
гурацию ключевых областей и кривых (контур лица, глаза, рот и т.п.) на
плоскости, а мимические деформации — как действие подгрупп некоторой
группы Ли на эту конфигурацию [2]. В двумерной постановке это приводит
к классу аналитически заданных отображений плоскости, в которых пара-
метры имеют прозрачный геометрико-мимический смысл и непосредственно
связаны с элементами алгебры Ли.

В качестве примера рассмотрим алгебру g5, которая является единствен-
ной неразрешимой неразложимой 5-мерной алгеброй. В каноническом базисе
e1, . . . , e5 она задаётся следующими коммутационными соотношениями:

[e1, e2] = 2e1, [e1, e3] = − e2, [e2, e3] = 2e3,

[e1, e4] = e5, [e2, e4] = e4, [e2, e5] = − e5, [e3, e5] = e4.

Подалгебра ⟨e1, e2, e3⟩ изоморфна sl2, а на span(e4, e5) задаётся её двумерное
неприводимое представление [1]. Полиномиальный инвариант действия g5 на
C3 используется для построения параметрических семейств преобразований
плоской модели лица и дальнейшего обобщения на 3D-случай. В двумерной
проекции этот инвариант приводит, например, к дробно-линейному отобра-
жению

w(t, z1) =
z1

1 + tz1
, t ∈ R,

определяющему семейство деформаций плоского лица. Известным свойством
этого отображения является сохранение класса обобщённых окружностей,
что позволяет обеспечивать геометрическую согласованность модели (глаза
остаются «глазами», рот — «ртом») и управляемость деформаций через па-
раметр t.

Показано, что выбор положения модельного лица в плоскости существенно
влияет на допустимые диапазоны параметра. Это приводит к естественным
ограничениям параметров, аналогичным физически допустимым диапазонам
мышечных сокращений в биомеханических моделях.

Выводятся простые аналитические формулы, интерпретируемые как ба-
зовые мимические движения (поднятие и опускание уголков рта, сжатие и
растяжение овала лица и т.п.). Для каждого такого движения параметр де-
формации связан с однопараметрической подгруппой в соответствующей ал-
гебре Ли.

Полученные примеры демонстрируют визуально правдоподобные измене-
ния выражений лиц при сохранении их узнаваемости, тогда как для многих
нейросетевых моделей реалистичность и узнаваемость преобразованных лиц
не всегда являются синонимами.
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О поиске относительно максимальных подгрупп
в конечных группах

Д.О. Ревин
Институт математики им. С.Л. Соболева СО РАН,

Новосибирск, Россия
revin@math.nsc.ru

Пусть X — фиксированный класс конечных групп со свойствами, напоми-
нающими свойства разрешимых групп, а именно:

• если H ⩽ G и G ∈ X, то H ∈ X;

• если H ⊴G и G ∈ X, то G/H ∈ X;

• если H ⊴G и H,G/H ∈ X, то G ∈ X.

В докладе будет обсуждаться следующая естественная проблема.
Проблема. Дана конечная группа. Найти ее максимальные X-подгруппы.

Будут обсуждаться связанные с данной проблемой трудности, а также осно-
ванные на идеях Х. Виланда [1], [2] возможные способы их преодоления.

Частным случаем отмеченной проблемы служит задача нахождения (мак-
симальных) разрешимых подгрупп в симметрической группе, идущая от клас-
сических работ Галуа и Жордана [3], [4], [5] и окончательное решение которой
получено совсем недавно [6].
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J. Math. Pures Appl. (Liouville) 11 (1846), 417–433.
[4] C.M. Jordan. Commentaire sur le Mémoire de Galois. Comptes rendus 60
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О локально конечных группах, содержащих прямые произведения
обобщенных полудиэдральных групп

В.С. Сенашов
Сибирский федеральный университет, Красноярск, Россия

Vasily.Senashov@yandex.ru

Группа G = ⟨d, i | d2n = i2 = 1, di = d2
n−1−1, n ⩾ 3⟩ называется полуди-

эдральной группой [1]. Группу G = ⟨r, s | r8n = s2 = 1, srs = r4n−1, n ⩾ 1⟩
будем называть обобщенной полудиэдральной группой. В случае когда n сте-
пень двойки G в точности полудиэдральная группа. Таким образом, обоб-
щенная полудиэдральная группа не обязательно 2-группа. Будем называть
группу G обобщенным локально конечным полудиэдром, если она является
объединением бесконечной возрастающей цепочки обобщенных полудиэдров
Gi:

G1 < . . . < Gi < . . . ,

G = ∪∞
i=1Gi.

В данной работе получен следующий результат.

Теорема 1. Пусть d — фиксированное натуральное число, G — локально
конечная группа, насыщенная группами из множества

M = {R(n)
1 × · · · ×R

(n)
d | n ∈ N},
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R
(n)
i — обобщенные полудиэдры. Тогда

G = A1 × · · · × Ad,

где Ai — обобщенные локально конечные полудиэдры.

Работа поддержана РНФ, проект 24–41–10004.
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Формулы для характеров неприводимых представлений
супералгебры Ли gl(m,n)

А.Н. Сергеев
Саратовский государственный университет, Саратов, Россия

sergeevan@info.sgu.ru

В докладе приводятся формулы для характеров неприводимых конечно-
мерных представлений общей линейной супералгебры gl(m,n). Пусть
K(gl(m,n)) — кольцо Гротендика конечномерных представлений. Доказы-
вается формула для разложения неприводимого характера в виде бесконеч-
ной суммы характеров модулей Каца. Доказывается также комбинаторная
формула для коэффициентов разложения неприводимых характеров по ха-
рактерам Эйлера. Как следствие дается новое доказательство формулы для
суперразмерности неприводимого модуля и формулы ограничения на подал-
гебру. Основной технический инструмент — это весовые диаграммы и кэп
диаграммы, введенные Дж. Брандоном и К. Строппел.
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Операторы Роты–Бакстера на компактных простых группах
и алгебрах Ли
С.В. Скресанов

Институт математики им. С.Л. Соболева СО РАН,
Новосибирск, Россия
skresan@math.nsc.ru

Операторы Роты–Бакстера на алгебрах (в том числе алгебрах Ли) находят
обширные применения в комбинаторике, теории вероятностей и при изучении
уравнений математической физики. Го, Ли и Шенг в 2021 г. предложили ана-
лог оператора Роты–Бакстера для групп Ли, причём дифференциал такого
оператора будет оператором Роты–Бакстера на соответствующей алгебре Ли.

В докладе будет рассказано о полученном докладчиком полном описании
операторов Роты–Бакстера на компактных простых группах и алгебрах Ли.

Полиэдральная реализация K-теории торических
и флаговых многообразий

Е.Ю. Смирнов
НИУ ВШЭ, НМУ, Москва, Россия,

GTIIT, Шаньтоу, Китай
evgeny.smirnov@gmail.com

В работе А.В. Пухликова и А.Г. Хованского [3] было предложено описание
кольца когомологий торического многообразия X как фактора кольца диф-
ференциальных операторов с постоянными коэффициентами по аннулятору
многочлена объема многогранника моментов многообразия X. Эта конструк-
ция была обобщена К. Кавехом [1], который заметил, что кольцо когомологий
многообразия полных флагов может быть получено в результате применения
аналогичной конструкции ко многограннику Гельфанда–Цетлина. Впослед-
ствии это описание было использовано в совместной работе докладчика с
В.А. Кириченко и В.А. Тимориным [2], в которой была предложена реализа-
ция исчисления Шуберта на многообразиях полных флагов при помощи пере-
сечения определенных наборов граней многогранников Гельфанда–Цетлина.

Доклад будет посвящен обобщению этих результатов на случай K-теории
гладких торических многообразий и обобщенных флаговых многообразий
G/B. При этом для K-теории вместо алгебры дифференциальных опера-
торов нужно рассматривать алгебру, порожденную операторами сдвига на
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решетке, и факторизовать ее по аннулятору многочлена Эрхарта многогран-
ника. Я собираюсь подробно остановиться на случае многообразия флагов
GL(n)/B и разобрать алгоритм для вычисления произведений классов струк-
турных пучков многообразий Шуберта (или, в комбинаторных терминах,
произведений многочленов Гротендика): для этого мы предъявим в кольце
многогранника Гельфанда–Цетлина элементы, отвечающие классам струк-
турных пучков многообразий Шуберта, и опишем их произведения в тер-
минах граней многогранников Гельфанда–Цетлина. Кроме того, я расскажу,
как получить аналогичное описание T -инвариантной K-теории гладких то-
рических многообразий и многообразий полных флагов типа A и как мог бы
выглядеть гипотетический ответ в случае редуктивных групп других типов.

Доклад основан на совместной работе с Л.В. Мониным [4], [5].
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Конечные подгруппы групп автоморфизмов
нетривиальных поверхностей Севери–Брауэра

А.К. Сонина
Математический институт им. В.А. Стеклова РАН,

Москва, Россия
sasha-sonina@mail.ru

Многообразия Севери–Брауэра над полем k являются скрученными фор-
мами проективного пространства: после перехода к алгебраическому замыка-
нию они становятся изоморфными Pn−1. Естественно изучать их группы авто-
морфизмов и, в частности, классифицировать конечные подгруппы в Aut(X)
для нетривиальных многообразий X.

61



Напомним, что многообразия Севери–Брауэра над k биективно соответ-
ствуют центральным простым алгебрам A над k. Более того, эта биекция
сохраняет группы автоморфизмов. По теореме Нетер–Сколема любой авто-
морфизм центральной простой алгебры над k внутренний, поэтому Aut(X) ∼=
A∗/k∗, где A — центральная простая k-алгебра, соответствующая X. Таким
образом, общий вопрос о том, какие конечные группы могут действовать
на многообразие Севери–Брауэра, не является содержательным без допол-
нительных ограничений: любая конечная группа G вложена в PGL|G|(D) для
любой центральной алгебры с делением D над k, т.е. действует на многооб-
разии Севери–Брауэра, соответствующем алгебре Mat|G|(D). Таким образом,
правильный вопрос звучит так: «Какие конечные подгруппы могут действо-
вать на многообразиях Севери–Брауэра, соответствующих центральным ал-
гебрам с делением над k?». Такие многообразия называются минимальными
многообразиями Севери–Брауэра.

По теореме Веддерберна для любой центральной простой алгебры над k
существуют целое положительное число r и центральная алгебра с делением
D над k такие, что A ≃Mr(D), поэтому в случае, когда deg(A) = p (где p
— простое) либо A ≃Mp(k), и тогда соответствующее многообразие Севери–
Брауэра тривиально, либо A является алгеброй с делением, а соответству-
ющее ей многообразие является минимальным. Именно этот случай и будет
рассмотрен в докладе.

Основным результатом доклада является описание возможных конечных
подгрупп в Aut(X), гдеX — минимальное нетривиальное многообразие Севери–
Брауэра, в случае, когда dim(X)+ 1 ̸= char(k). Кроме того, будут построены
серии экстремальных примеров: многообразия, на которые действует макси-
мальное семейство конечных групп.

Доклад основан на недавних препринтах Анны Савельевой [1] и доклад-
чика [2].

Список литературы
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О поднятиях элементов группы Вейля
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ПустьG— связная редуктивная алгебраическая группа над алгебраически
замкнутым полем. Рассмотрим максимальный тор T в G и его нормализатор
N = NG(T ). Тогда W = N/T — группа Вейля группы G. Ж. Титс постро-
ил канонический конечный прообраз группы W в N и анонсировал решение
вопроса, когда расширение группы W с помощью T расщепляется, и, бо-
лее общо, поиск минимальных добавлений для W в N [1]. Позднее вопрос
расщепления в случае простых групп был решен независимо различными ав-
торами (см. обзорную работу [3]). Также отметим, что в работе [2] описаны
прообразы группы W , которые удовлетворяют соотношениям кос.

В ряде работ изучался смежный вопрос — если элемент w ∈ W имеет
порядок d, то есть ли у него прообраз (поднятие) в N такого же порядка (см.
обзорную работу [3])? В частности, если вся группа W имеет изоморфное
поднятие в N , то понятно, что и все элементы имеют требуемые поднятия.
Аналогичные вопросы естественным образом возникают для конечных групп
лиева типа.

В докладе будут обсуждаться новые результаты о возможных порядках
поднятий элементов группы Вейля в ее нормализатор, а также минимальные
порядки поднятий самой группы Вейля.

Работа выполнена в рамках государственного задания ИМ СО РАН, тема
FWNF–2026–0017.

Список литературы
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Точные неприводимые представления
для локально нильпотентных алгебр Ли

М.А. Сурков
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Определение. Локально нильпотентная алгебра Ли n — это прямой пре-
дел n = lim−→ ni, где n1 ⊂ n2 ⊂ . . . nk ⊂ . . . — вложенные друг в друга конеч-
номерные нильпотентные алгебры Ли.

Мы будем рассматривать так называемые ниль-подалгебры Ли–Дынкина,
которые являются максимальными нильпотентными подалгебрами в алгеб-
рах sl∞(C), so∞(C), sp∞(C). Каждая такая подалгебра соответствует линей-
ному порядку на N, который определяется расщепляющей подалгеброй Кар-
тана.

Пусть λ ∈ n∗. Для любых x, y ∈ n положим

βλ(x, y) := λ([x, y]).

Определение. Поляризация p алгебры Ли n для формы λ — это мак-
симальное изотропное подпространство относительно билинейной формы βλ,
которое является подалгеброй.

Рассмотрим одномерное представление λ|p : p → gl(V ) = C, x 7→ λ(x). Ин-
дуцируем с него представление универсальной обёртывающей алгебры всей
алгебры Ли n:

M(λ) = ind(V, n) = U(n)⊗U(p) V.

Для произвольного λ неизвестно, существует ли поляризация p, и если суще-
ствует, будет ли представление M(λ) неприводимо. Согласно [1], в конечно-
мерном случае p существует, M(λ) неприводимо, и аннулятор M(λ) в U(n)
не зависит от выбора p.

Выберем λ ∈ n∗. В работе [2] по форме λ строится примитивный идеал
J(λ) в U(n). Примитивный идеал строится по индукции за бесконечное чис-
ло шагов, и нет явной конструкции для построения неприводимого представ-
ления M(λ) такого, что AnnU(n)M(λ) = J(λ). Также в работе [2] доказано,
что J(λ) = {0} тогда и только тогда, когда λ — так называемая регулярная
форма.

Рассмотрим линейный порядок ≻ на N, соответствующий выбранной ал-
гебре Ли n. Выберем регулярную форму λ ∈ n∗.

Случай 1. В N есть минимальный и максимальный элементы согласно
порядку ≻. Тогда нулевой идеал не примитивен. Действительно, пусть a —
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минимальный элемент в N, b — максимальный. Тогда [ea,b, ei,j] = 0 для любых
i, j ∈ N. Элемент ea,b лежит в центре U(n), значит, центр U(n) ненулевой. Из
этого следует, что точное представление построить невозможно.

Случай 2. Существует x ∈ N и бесконечные подмножества I1, I2 ⊂ N
такие, что I2 ≻ x ≻ I1 и I1 ∪ {x} ∪ I2 = N.

Теорема. Подалгебра p = ⟨ei,j, i ∈ I1, j ∈ {x}∪I2⟩ является поляризацией
n для формы λ, и представление M(λ) неприводимо.

Случай 3. Для любого элемента N множество элементов больше его или
множество элементов меньше его (согласно ≻) конечно. В этом случае ≻ эк-
вивалентен стандартному порядку на N. Этот случай реализуется для sl∞(C).
Рассмотрим стандартный базис в n из матричных единиц {ei,j, i < j}. Пусть
n < α1 < α2 < · · · < αn — натуральные числа. Рассмотрим матрицу, в кото-
рой на месте (i, j) стоит λi,j := λ(ei,j). Обозначим за Mn

α1,...,αn
(λ) минор этой

матрицы, составленный из строк с номерами 1, 2, . . . , n и столбцов с номера-
ми α1, α2, . . . , αn. В этом случае регулярность λ означает, что любой такой
минор отличен от нуля.

Пусть i < j — натуральные числа. Обозначим через e◦i,j(λ) следующий
элемент алгебры Ли:

e◦i,j =
i∑

k=1

(−1)i+kM i−1
j,j+1,...,j+k−2,j+k,...,j+i−1(λ)ei,k.

Элемент e◦i,j(λ) можно понимать просто как разложение по последней строке
минора M i

j,j+1,...,j+i−1(λ), в котором последнюю строчку λi,j, λi,j+1, . . . , λi,j+i−1

заменили на ei,j, ei,j+1, . . . , ei,j+i−1.

Теорема. Подалгебра p = ⟨e◦i,j(λ), i < j⟩ является поляризацией n для
формы λ, и представление M(λ) неприводимо.

Список литературы
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dimensional Lie algebras. J. Algebra. 585 (2021), 501–557.
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В работе [1] А. Мясников и С. Лютиков ввели понятие центроида груп-
пы. Фактически, они доказали, что множество всех отображений группы в
себя, которые являются нормальными (то есть устойчивыми к сопряжениям
в группе) и к тому же являются квазиэндоморфизмами (то есть такими отоб-
ражениями ϕ, для которых верно [x, y] = 1 → ϕ(xy) = ϕ(x)ϕ(y)) по сути есть
ассоциативное кольцо с единицей.

С одной стороны, центроид — это максимальное кольцо скаляров, дей-
ствующее точно на группе; с другой стороны, это обобщение понятия кольца
эндоморфизмов абелевых групп на некоммутативные группы. В той же ста-
тье авторы описали структуру центроида для CSA-групп, а также свободных
нильпотентных и унитреугольных групп над произвольным биномиальным
кольцом. С помощью последнего результата удалось доказать жесткость сво-
бодных нильпотентных групп, а также групп унитреугольных матриц (см.
также [2]).

Одним из основных мотивов к началу изучения центроидов групп стала
теория экспоненциальных MR-групп. Здесь операция возведения в целую сте-
пень элементов группы расширяется до возведения в степень, являющуюся
элементом некоторого кольца, удовлетворяющего заданному набору аксиом.
Одним из примеров таких групп является делимое пополнение нильпотент-
ных групп по Мальцеву, а также пополнение нильпотентных групп по Ф.
Холлу.

В докладе будут представлены результаты докладчика, И.М. Бучинско-
го и А.Е. Чеснокова о центроидах групп. Более точно, нами были описаны
центроиды CT-групп (класс CT — это расширение класса CSA-групп), мета-
белевых групп Баумслага–Солитера, свободных метабелевых групп и спле-
тений групп. Также была доказана жесткость (см. [2]) для большого класса
двуступенно нильпотентных R-групп по Ф. Холлу.

Список литературы
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Доклад основан на тезисах и развивает геометрико-групповой язык, в ко-
тором термодинамика чёрных дыр рассматривается как инвариантная струк-
тура на фазовом пространстве, а равновесие — как выделенное подмного-
образие. Пусть термодинамическое фазовое пространство имеет координаты
ZA = (Φ, Ea, Ia), где Φ — потенциал, Ea — экстенсивные, Ia — сопряжённые
интенсивные переменные. Контактная форма Гиббса [1]

Θ = dΦ− Ia dE
a, Θ ∧ (dΘ)n ̸= 0,

задаёт контактную структуру [Θ]. Равновесное множество E ⊂ T фиксирует-
ся вложением φ : E ↪→ T и условием [2]

φ∗(Θ) = 0 ⇐⇒ dΦ = Ia dE
a, Ia =

∂Φ

∂Ea
.

Для Kerr-подобных чёрных дыр (включая деформации, возникающие в эф-
фективных «stringy» моделях) первый закон записывается как

dM = T dS + Ω dJ + ΦA dQA,

и в энергетическом представлении Φ ≡ M , Ea = (S, J,QA), Ia = (T,Ω,ΦA)
контактная форма принимает вид

Θ = dM − T dS − Ω dJ − ΦA dQA,

а равновесная термодинамика задаётся уравнением состоянияM =M(S, J,QA)
и стандартными соотношениями для (T,Ω,ΦA) как производных по (S, J,QA).
При наличии размерностной (Smarr-подобной) гомогенности возникает инва-
риант согласованных масштабирований

ISmarr = αM − β TS − γ ΩJ − δΦAQA,

где коэффициенты задаются физическими размерностями в выбранной мо-
дели.

Далее вводится термодинамическая группа симметрий как группа кон-
тактных преобразований

Gth :=
{
F ∈ Diff(T)

∣∣∣ F ∗Θ = ΩF Θ, ΩF ̸= 0
}
,
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и выделяется подгруппа G(0)
th ⊂ Gth, сохраняющая функциональную форму

уравнения состояния в фиксированном классе универсальности. Преобразо-
вания Лежандра являются элементами Gth и реализуют смену потенциала
при сохранении класса [Θ]; на уровне алгебры Ли это выражается условием
LXΘ = fXΘ для инфинитезимального генератора X. Если действие G(0)

th на
равновесном многообразии транзитивно, то пространство состояний органи-
зуется как однородное пространство

E ≃ G
(0)
th /H,

где H — стабилизатор типичной точки (референтного состояния); такая фор-
ма удобна для классификации ветвей решений через орбиты и инварианты
действия.

Экстремальный предел выделяет страты, на которых часть термодинами-
ческих мод становится «нулевой», а near-horizon динамика получает расши-
ренную симметрию. Для Kerr (без зарядов) экстремальность задаётся усло-
виями

TH = 0, J =M 2, S ̸= 0,

что определяет подмногообразие Eext ⊂ E; групповая интерпретация состоит
в увеличении стабилизатора Hext ⊋ H. Связь с Kerr/CFT заключается в
том, что near-horizon (экстремальная) геометрия допускает асимптотическую
алгебру Вирасоро, а энтропия воспроизводится формулой Карди

SCFT =
π2

3

(
cLTL + cRTR

)
, в экстремальном режиме обычно SCFT =

π2

3
cLTL,

где параметры (cL,R, TL,R) выражаются через инвариантные комбинации мак-
ропараметров и согласуются с ограничениями экстремальности и Smarr-струк-
турой. Методологически подход согласуется с геометрико-групповой линией
работ П.И. Пронина по локальным симметриям и квантовым эффектам в
кривых фонах [3].
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Новое бесконечное семейство накрытий полных графов,
допускающих полутранзитивное действие
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Конечный неориентированный простой граф Γ называется накрытием гра-
фа Kn (т.е. полного графа на n вершинах), если множество вершин графа Γ
допускает разбиение на n коклик (называемых фибрами накрытия) одина-
кового размера r ≥ 2, такое что объединение любых двух различных фибр
индуцирует совершенное паросочетание. Легко показать, что такое накры-
тие является антиподальным диаметра 3 тогда и только тогда, когда лю-
бые две несмежные вершины из различных фибр имеют ненулевое число
общих соседей. Изучение антиподальных накрытий диаметра 3 представ-
ляет особый интерес из-за их важных приложений в теории кодирования
(например, в задачах поиска новых примеров 1-совершенных кодов в гра-
фах) и комбинаторике (например, в задачах построения равноугольных мно-
жеств прямых). До сих пор значительное внимание уделялось классификации
антиподальных накрытий диаметра 3, обладающих дополнительными свой-
ствами реберной транзитивности и дистанционной регулярности (см. обзор в
[1]). В докладе мы опускаем второе требование и исследуем класс реберно-
транзитивных антиподальных накрытий диаметра 3 в общем случае. Каждая
реберно-транзитивная группа G автоморфизмов антиподального накрытия
диаметра 3 индуцирует 2-однородную группу подстановокGΣ на множестве Σ
его фибр, которая ввиду теорем Кантора и Бернсайда является либо аффин-
ной, либо почти простой. В случае почти простой группы GΣ классификация
накрытий со свойством дистанционной регулярности была завершена в рабо-
те автора [2], в которой также был найден ряд новых конструкций накрытий
диаметра 3, не являющихся дистанционно-регулярными и обладающих арк-
транзитивной простой группой G. Однако до настоящего времени не было
известно ни одной конструкции антиподальных накрытий диаметра 3, до-
пускающих полутранзитивную (т.е. реберно-, но не арк-транзитивную) про-
стую группу автоморфизмов. Мы покажем, что такие накрытия действитель-
но существуют. А именно, мы представим конструкцию нового бесконечного
семейства антиподальных накрытий диаметра 3, допускающих полутранзи-
тивную группу автоморфизмов, изоморфную простой группе Судзуки Sz(q),
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q ≥ 8. Как следствие, мы получим новое бесконечное семейство реберно-
транзитивных графов, допускающих разбиение множества вершин на совер-
шенные 1-коды.

Теорема. Пусть G = Sz(q) — это простая группа Судзуки, где q > 4, S —
это произвольная силовская 2-подгруппа в G (подгруппа порядка q2), S1 —
это подгруппа в S индекса 2 и M := NG(S) — нормализатор группы S в G.
Зафиксируем произвольно некоторые инволюцию g из G −M и элемент y
порядка 4 из S − S1 такие что |yg| = 4. Пусть D = S1(yg)S1 ∪ S1(yg)

−1S1 и
Γ := Γ(G,S1, D) — это граф на множестве правых смежных классов группы
G по подгруппе S1, в котором

S1x смежна с S1z ⇐⇒ xz−1 ∈ D.

Тогда Γ — это G-полутранзитивное антиподальное 2(q − 1)-накрытие графа
Kq2+1 и d(Γ) = 3 при любом выборе подгрупп S, S1 и элементов y, g, удо-
влетворяющих заданным выше условиям. Его полная группа автоморфизмов
Aut(Γ) ≤ Z2 × Aut(Sz(q)) арк-транзитивна.

Работа выполнена при частичной поддержке Министерства науки и выс-
шего образования РФ в рамках проекта развития регионального научно-
образовательного математического центра «Уральский математический
центр» (соглашение 075–02–2025–1719/1).
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Прямоугольные многогранники и их связь
с различными математическими сюжетами

Д.А. Цыганков
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Пусть P — прямоугольный многогранник конечного объёма в простран-
стве Лобачевского Ln. Некоторые вершины такого многогранника могут ле-
жать на абсолюте ∂Ln.

Конструкция [1] по правильной раскраске Λ : F −→ Zk
2 набора гипергра-

ней F многогранника P позволяет построить гиперболическое многообразие
N(P,Λ). Само многообразие представляет из себя склейку из 2k копий P .
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В случае, если P не имеет вершин на абсолюте, N(P,Λ) гомеоморфно
факторпространству вещественного момент-угол многообразия RP , которое
изучается в торической топологии [2], [3].

В случае, если dimP = 3, все вершины лежат на абсолюте, а раскраска Λ :
F −→ Z2

2 шахматная (в 2 цвета e1, e2), многообразие N(P,Λ) диффеоморфно
S3\L, где L — некоторое зацепление [4]. Из некоторых многогранников P , у
которых не все вершины лежат на абсолюте, можно по-прежнему построить
S3\L.

В размерности 4 имеются аналогичные результаты. Например, из некото-
рых прямоугольных многогранников можно склеить многообразия, которые
являются S4\T5, RP 4\T5, где T5 — 5 зацепленных двумерных торов. Однако
в размерности 4 таких примеров ограниченное количество.

Многообразия N(P,Λ), начиная с размерности 3 определяются, с точно-
стью до изометрии своими фундаментальными группами (согласно жёстко-
сти Мостова). По этой причине интересно изучать объёмы таких многообра-
зий, а значит и объёмы многогранников P .

Планируется рассказать, какими могут быть объёмы многогранников P .
Например, здесь появляется постоянная Каталана; πn, где n = 1, 2, 3, 4; ζ(3);
некоторые другие константы, связанные с открытыми задачами из теории
чисел. Однако до сих пор не все прямоугольные многогранники классифи-
цированы, как и не посчитаны все объёмы известных прямоугольных много-
гранников.
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Гибкость сферических многообразий
Шафаревич А.А.

МГУ им. М.В. Ломоносова, НИУ ВШЭ, Москва, Россия
shafarevich.a@gmail.com

Гладкая точка x алгебраического многообразия называется гибкой, если
касательное пространство TxX порождается касательными векторами к ор-
битам Ga-действий, проходящими через точку x. МногообразиеX называется
гибким, если все его гладкие точки гибкие. Обозначим через SAut(X) под-
группу в Aut(X), порожденную всеми Ga-подгруппами. В работе [1] было
доказано, что аффинное многообразие X является гибким тогда и только
тогда, когда группа SAut(X) действует транзитивно на множестве гладких
точек X. Более того, в этом случае группа SAut(X) действует на множестве
гладких точек m-транзитивно для любого m.

Известно, что обратимые регулярные функции являются инвариантами
относительно всех Ga-действий. Поэтому необходимым условием гибкости яв-
ляется отсутствие непостоянных обратимых регулярных функций. В [2] бы-
ла высказана гипотеза, что аффинные сферические многообразия являются
гибкими тогда и только тогда, когда на них нет непостоянных обратимых
регулярных функций.

В своем докладе я расскажу, почему эта гипотеза верна. Более того, я по-
кажу, что для произвольного аффинного сферического многообразия груп-
па Aut(X) действует транзитивно на множестве гладких точек. Доклад бу-
дет основан на препринте [3], подготовленным в ходе проведения исследова-
ния в рамках проекта «Международное академическое сотрудничество» НИУ
ВШЭ.
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О наследовании π-теоремы Силова
подгруппами классических групп

В.Д. Шепелев
Новосибирский государственный университет,

Новосибирск, Россия
v.shepelev@g.nsu.ru

Пусть π — множество простых чисел. Конечная группа называется π-
группой, если все простые делители её порядка принадлежат π. ГруппаG удо-
влетворяет π-теореме Силова (G ∈ Dπ), если её максимальные π-подгруппы
сопряжены, и сильной π-теореме Силова (G ∈ Wπ), если всякая подгруппа
G удовлетворяет π-теореме Силова.

Виланд [1, вопрос (h)] предложил классифицировать простые группы G ∈
Wπ. Cпорадические и знакопеременные группы из Wπ классифицированы
Н.Ч. Манзаевой [2], группы лиева типа ранга 1 — докладчиком [3].

Если G — группа, то G ∈ Wπ если и только если G ∈ Dπ и M ∈ Wπ

для любой максимальной подгруппы M . Согласно теореме Ашбахера макси-
мальные подгруппы классических групп либо принадлежат одному из восьми
«геометрических» классов, либо являются почти простыми. Подгруппы пер-
вого типа хорошо известны [4], подгруппы второго типа — не всегда. Неабе-
левы композиционные факторы подгрупп Ашбахера — знакопеременные или
классические группы.

Определение. ЕслиG— знакопеременная группа или классическая груп-
па лиева типа ранга 1, то G ∈ W̃π, если G ∈ Wπ. Если G — классическая
группа ранга > 1, то G ∈ W̃π, если G ∈ Dπ, и S ∈ W̃π для всякого неабелева
композиционного фактора S любого элемента класса Ашбахера.

Решая проблему Виланда, естественно попытаться перечислить классиче-
ские группы из W̃π. Но возникает вопрос о корректности: определяется ли
принадлежность W̃π только типом изоморфизма группы? Известны изомор-
физмы между группами лиева типа, а также изоморфизмы со знакоперемен-
ными группами (например, U4(2) ∼= S4(3), L4(2) ∼= A8). Представители клас-
сов Ашбахера при этом зависят от того, в каком качестве мы рассматриваем
ту или иную группу.

Теорема. Для любого множества π принадлежность W̃π классической
группы G определяется только типом изоморфизма группы G.

В дальнейшем планируется найти арифметический критерий справедли-
вости свойства W̃π для всех простых классических групп лиева типа.

Работа выполнена за счёт гранта Российского научного фонда 24–21–00163.
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О группах с N-критическим графом в локально конечных группах
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Пусть ℜ — множество групп. Будем говорить, что группа G насыщена
группами из ℜ, если любая конечная подгруппа из G содержится в под-
группе группы G, изоморфной некоторой группе из ℜ [1]. N -критическим
графом ΓNc(G) группы G называется ориентированный граф, для которо-
го V (ΓNc(G)) = π(G), и (p, q) является ребром ΓNc(G), если в G найдется
(p, q)-подгруппа Шмидта [2].

Теорема 1. Пусть G — локально конечная группа, π(G) = {2, p1, · · · , pd}
и G насыщена группами из множества

M = {Hi | i ∈ N},

где Hi — конечная группа, обладающая N -критическим графом ΓNc(Hi) с
множеством вершин

V (ΓNc(Hi)) = π(G)

и множеством ребер

{(pj, 2) | pj ∈ π(G), 1 ⩽ j ⩽ d}.

Тогда G обладает нормальной 2
′-холловой подгруппой

A = A1 × · · · × Aj × · · · × Ad,

где Aj — силовская pj−подгруппа группы.
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Гомоморфизмы между обобщёнными
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Пусть (W,S) — система Кокстера. Обозначим через T подмножество W ,
состоящее из всех элементов wsw−1, где w ∈ W и s ∈ S. Элементы множе-
ства T называются отражениями системы (W,S), а элементы множества S
простыми отражениями.

Рассмотрим конечномерное представление ρ : W → GL(V ) над полем ха-
рактеристики, отличной от 2. Удобно представить, что W действует на V по
правилу w · v = ρ(w)(v). Мы предполагаем, что это представление точное и
что в нём каждое отражение t ∈ T действует как отражение на V . Это зна-
чит, что существует вектор αt ∈ V и ковектор α∨

t ∈ V ∗ такие, что α∨
t (αt) = 2

и
∀v ∈ V : t · v = v − α∨

t (v)αt.

В этом случае, αt и α∨
t называются корнем и кокорнем отражения t. Заметим,

что выполнение этого свойства достаточно потребовать только для простых
отражений. Кроме того, мы потребуем выполнение следующего GKM-условия
(названного по мотивам статьи М. Горески, Р. Коттвица, Р. Макферсона [1]):

t ̸= t′ ⇒ αt и αt′ непропорциональны.

Это условие выполняется, например, для геометрического представления груп-
пы W .
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Пусть R — симметрическая алгебра пространства V . Эта алгебра гра-
дуирована так, что R2 = V . Действие W на V продолжается до однород-
ного действия на R. Для каждого t ∈ T рассмотрим кольцо инвариантов
Rt = {r ∈ R | t · r = r} и для последовательности t = (t1, . . . , tn) элементов
из T (отражений) рассмотрим градуированный R-R-бимодуль:

R(t) = R⊗Rt1R⊗Rt2 · · · ⊗RtnR.

Мы назовём его обобщённым бимодулем Ботта–Самельсона. Прилагатель-
ное «обобщённый» в этом случае подчёркивает тот факт, что элементы по-
следовательности t могут быть любыми отражениями из T . Таким образом,
бимодули Ботта–Самельсона соответствуют случаю, когда t — последова-
тельность элементов из S.

Теорема (Щиголев). Для любых последовательностей отражений t и t′

пространство градуированных гомоморфизмов Hom•
R⊗R(R(t), R(t

′)) является
рефлексивным как левым, так и правым R-модулем.

Здесь уместно провести аналогию с обычными бимодулями Ботта–Самель-
сона. Согласно результату В. Зёргеля [3], пространство Hom•

R⊗R(R(t), R(t
′))

является свободным правым и левым R-модулем в случае, когда t и t′ —
последовательности простых отражений. Градуированный ранг этого моду-
ля даётся Hom-формулой Зёргеля [3, Theorem 5.15]. Более того, свободный
базис такого модуля был построен Н. Либединским [2]. Для обобщённых би-
модулей Ботта–Самельсона ситуация радикально отличается, как показывает
следующий результат.

Теорема (Щиголев). Для любой группы Кокстера, содержащей подсисте-
му типа An, где n ≥ 3, существует последовательность отражений t длины
2n + 1 такая, что пространство Hom•

R⊗R(R,R(t)) не свободно ни как левый,
ни как правый R-модуль. Проективная размерность этого модуля равна 1, в
то время как проективная размерность двойственного модуля равна n− 2.
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The report is based on the work [1] and also contains new results. We introduce
quantum super-spherical pairs as coideal subalgebras in general linear and ortho-
symplectic quantum supergroups for symmetric grading. These subalgebras play a
role of isotropy subgroups for matrices solving the Z2-graded reflection equation.
They generalize quantum (pseudo)-symmetric pairs of Letzter–Kolb–Regelskis–
Vlaar. Similar results, based on methods different from ours, were obtained in the
work [2].

We also list classical super-spherical pairs (counterpart of i-quantum super-
groups) in general linear and orthosymplectic Lie superalgebras for arbitrary gra-
ding which are quantizable as coideal subalgebras in standard quantum super-
groups. We consider all polarizations, describe the Satake-type diagrams and prove
that the corresponding subalgebras are non-trivial (do not exhaust all of g).
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J. Algebra 674 (2025), 276–313.
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Semisimple postLie algebras
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PostLie algebras were defined by B. Vallette in 2007 [4]. A postLie algebra is
a linear space endowed with two bilinear products {, } and · such that {, } is Lie
one and the following identities hold:

[x, y] · z = x · (y · z)− y · (x · z),
x · {y, z} = {x · y, z}+ {y, x · z},

(1)
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where [x, y] = x · y − y · x+ {x, y}.
PostLie algebras are connected with Yang–Baxter equation, operad theory,

topology, braces.
Given a postLie algebra L, denote by n and g the Lie algebra (L, {, }) and

(L, [, ]) respectively. It is known [3] that given a Lie algebra ⟨L, {, }⟩ with an
Rota–Baxter operator R of weight 1, we have that (L, {, }, ·) is a postLie algebra,
where x · y = {R(x), y}.

Below, we consider only finite-dimensional objects defined over C.

Theorem 1. [1] Let (g, n) be a pair of Lie algebras, where g is semisimple
and n is arbitrary. Suppose that (g, n) admits a post-Lie algebra structure. Then
n ∼= g.

Theorem 1 implies, in particular, that given semisimple Lie algebras g and n

which are connected in some postLie algebra, we derive that n ∼= g and all such
postLie algebras come from Rota–Baxter operators of weight 1. Our goal is to
describe all such postLie algebras, or equivalently, all corresponding Rota–Baxter
operators, in the case where n = L1 ⊕ . . . ⊕ Lm, Li

∼= L, and L is a simple Lie
algebra.

Theorem 2. Let L be a simple finite-dimensional complex Lie algebra and
n ∼= Lm. Suppose that R is a Rota–Baxter operator of weight 1 on n such that g is
semisimple. Then up to conjugation with an automorphism of n, the R considered
as an operator acting on Cm ⊗ L has the form R = P ⊗ id, where P is a Rota–
Baxter operator of weight 1 on the commutative algebra Cm.

Theorem 2 describes all mentioned above structures, since all Rota–Baxter
operators of weight 1 on the sum of fields are classified, see [2].

The research is supported by Russian Science Foundation (project 25–41–
00005).
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New counterexamples to the Zariski Cancellation Problem
in positive characteristic

A. Pal
HSE University, Faculty of Computer Science, Moscow, Russia
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This talk is based on a joint work with Parnashree Ghosh [1].
In this talk, we define a new infinite family of counterexamples to the Zariski

Cancellation Problem over a field of positive characteristic (in higher dimensions)
and show that they are pairwise non-isomorphic and also non-isomorphic to the
existing family of counterexamples, demonstrated by Neena Gupta in [2].
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Local and 2-local 1
2-derivations on finite-dimensional Lie algebras
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The notion of δ-derivations was introduced by V.Filippov for Lie algebras in [3],
[4]. The space of δ-derivations includes usual derivations (δ = 1), anti-derivations
(δ = −1) and elements from the centroid. In [4] it was proved that prime Lie
algebras, as a rule, do not have nonzero δ-derivations (provided δ ̸= 1,−1, 0, 12),
and all 1

2-derivations of an arbitrary prime Lie algebra A over the field F of
characteristic p ̸= 2, 3 with a non-degenerate symmetric invariant bilinear form
were described. It was proved that if A is a central simple Lie algebra over a
field of characteristic p ̸= 2, 3 with a non-degenerate symmetric invariant bilinear
form, then any 1

2-derivation φ has the form φ(x) = λx for some λ ∈ F.
In [5], δ-derivations were investigated for prime alternative and non-Lie Malcev

algebras over the ring of operators F, and it was proved that alternative and non-
Lie Malcev algebras with certain restrictions of F have no non-trivial δ-derivation.

Nowadays, local and 2-local operators have become popular for some non-
associative algebras such as the Lie, Jordan, and Leibniz algebras. The notions
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of local derivations were introduced in 1990 by Kadison [7] and Larson, Sourour
[8]. Later in 1997, Šemrl introduced the notions of 2-local derivations and 2-local
automorphisms of algebras [9].

Investigation of local derivations on Lie algebras was initiated in [1] by Sh.
Ayupov and K. Kudaybergenov. They proved that every local derivation on semisimple
Lie algebras is a derivation and gave examples of nilpotent finite-dimensional Lie
algebras with local derivations that are not derivations. In [2], local derivations
of solvable Lie algebras are investigated, and it is shown that in the class of
solvable Lie algebras there exist algebras that admit local derivations that are not
derivations and also algebras for which every local derivation is a derivation.

Definition 1. Let (L, [−,−]) be an algebra with a multiplication [−,−]. A
linear map φ is called a δ-derivation if it satisfies

φ[x, y] = δ
(
[φ(x), y] + [x, φ(y)]

)
,

where δ is from the ground field F.
Note that 1-derivation is a usual derivation and (−1)-derivation is called an

anti-derivation. If φ1 and φ2 are δ1 and δ2-derivations, respectively, then their
commutator [φ1, φ2] = φ1φ2−φ2φ1 is a δ1δ2-derivation. The set of all δ-derivations,
for the fixed δ, we denote by Derδ(L). For the Lie algebras, the notion of anti-
derivations coincides with the notion of reverse derivations, which was studied by
Herstein in [6]. Note that the main example of 1

2-derivations is the multiplication
by an element from the ground field, i.e., φ(x) = λx for all x ∈ L. Such kind of
1
2-derivations are called trivial 1

2-derivations.
Definition 2. A linear map ∆ is called a local δ-derivation, if for any x ∈ L,

there exists a δ-derivation φx : L → L (depending on x) such that ∆(x) = φx(x).
The set of all local δ-derivations on L we denote by LocDerδ(L).

Definition 3. A map ∇ : L → L (not necessary linear) is called a 2-local
δ-derivation, if for any x, y ∈ L, there exists a δ-derivation φx,y ∈ Derδ(L) such
that

∇(x) = φx,y(x), ∇(y) = φx,y(y).

It should be noted that 2-local δ-derivation is not necessarily linear, but for
any x ∈ L and for any scalar λ, we have

∇(λx) = φx,λx(λx) = λφx,λx(x) = λ∇(x).

In this work, we focus on investigating local and 2-local 1
2-derivations. Since

any 1
2-derivation is a local and 2-local 1

2-derivations, we are interested in local
and 2-local 1

2-derivation, which is not a 1
2-derivation. Such local (resp. 2-local)

1
2-derivations we call non-trivial local (resp. 2-local) 1

2-derivations.
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The following theorem is the main result of this note.
Theorem 1. Let L be an algebra, whose all 1

2-derivation are trivial. Then any
local and 2-local 1

2-derivation of L is trivial.
Corollary 1. Any local and 2-local 1

2-derivation of the following algebras is a
1
2-derivation:

• finite-dimensional semisimple Lie algebras;

• finite-dimensional semisimple Jordan algebras;

• finite-dimensional semisimple Malcev algebras;

• finite-dimensional semisimple structurable algebras;

• finite-dimensional semisimple alternative algebras;

• finite-dimensional semisimple n-Lie algebras;

• The Lie algebra W(a, b) for b ̸= −1, with basis {Li, Ij}i,j∈Z and the multiplication

[Lm, Ln] = (m− n)Lm+n, [Lm, In] = −(n+ a+ bm)Im+n.

• The Virasoro algebra Vir with basis {C,Li}i∈Z and the multiplication

[Lm, Ln] = (m− n)Lm+n +
m3 −m

12
δm+n,0C.

• The Block Lie algebraB(q) for q /∈ Z with basis {Lm,i}m,i∈Z and multiplication

[Lm,i, Ln,j] = (n(i+ q)−m(j + q))Lm+n,i+j.

• Galilean type algebras gal(d), G and g̃(ℓ).
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